|
|
|
from models import Model
|
|
|
|
|
|
|
|
import scipy.signal
|
|
|
|
from scipy.fftpack import fft
|
|
|
|
from scipy.signal import argrelextrema
|
|
|
|
|
|
|
|
import utils
|
|
|
|
import numpy as np
|
|
|
|
import pickle
|
|
|
|
|
|
|
|
|
|
|
|
class StepModel(Model):
|
|
|
|
def __init__(self):
|
|
|
|
super()
|
|
|
|
self.segments = []
|
|
|
|
self.idrops = []
|
|
|
|
self.state = {
|
|
|
|
'confidence': 1.5,
|
|
|
|
'convolve_max': 570000
|
|
|
|
}
|
|
|
|
|
|
|
|
def fit(self, dataframe, segments):
|
|
|
|
self.segments = segments
|
|
|
|
#dataframe = dataframe.iloc[::-1]
|
|
|
|
d_min = min(dataframe['value'])
|
|
|
|
for i in range(0,len(dataframe['value'])):
|
|
|
|
dataframe.loc[i, 'value'] = dataframe.loc[i, 'value'] - d_min
|
|
|
|
data = dataframe['value']
|
|
|
|
confidences = []
|
|
|
|
convolve_list = []
|
|
|
|
for segment in segments:
|
|
|
|
if segment['labeled']:
|
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, segment['from'])
|
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, segment['to'])
|
|
|
|
|
|
|
|
segment_data = data[segment_from_index : segment_to_index + 1]
|
|
|
|
segment_min = min(segment_data)
|
|
|
|
segment_max = max(segment_data)
|
|
|
|
confidences.append( 0.4*(segment_max - segment_min))
|
|
|
|
flat_segment = segment_data #.rolling(window=5).mean()
|
|
|
|
segment_min_index = flat_segment.idxmin() - 5
|
|
|
|
self.idrops.append(segment_min_index)
|
|
|
|
labeled_drop = data[segment_min_index - 240 : segment_min_index + 240]
|
|
|
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
|
|
|
|
convolve_list.append(max(convolve))
|
|
|
|
|
|
|
|
if len(confidences) > 0:
|
|
|
|
self.state['confidence'] = min(confidences)
|
|
|
|
else:
|
|
|
|
self.state['confidence'] = 1.5
|
|
|
|
|
|
|
|
if len(convolve_list) > 0:
|
|
|
|
self.state['convolve_max'] = max(convolve_list)
|
|
|
|
else:
|
|
|
|
self.state['convolve_max'] = 570000
|
|
|
|
|
|
|
|
|
|
|
|
async def predict(self, dataframe):
|
|
|
|
#dataframe = dataframe.iloc[::-1]
|
|
|
|
d_min = min(dataframe['value'])
|
|
|
|
for i in range(0,len(dataframe['value'])):
|
|
|
|
dataframe.loc[i, 'value'] = dataframe.loc[i, 'value'] - d_min
|
|
|
|
|
|
|
|
data = dataframe['value']
|
|
|
|
|
|
|
|
result = self.__predict(data)
|
|
|
|
result.sort()
|
|
|
|
|
|
|
|
if len(self.segments) > 0:
|
|
|
|
result = [segment for segment in result if not utils.is_intersect(segment, self.segments)]
|
|
|
|
return result
|
|
|
|
|
|
|
|
def __predict(self, data):
|
|
|
|
window_size = 24
|
|
|
|
all_max_flatten_data = data.rolling(window=window_size).mean()
|
|
|
|
new_flat_data = []
|
|
|
|
for val in all_max_flatten_data:
|
|
|
|
new_flat_data.append(val)
|
|
|
|
|
|
|
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
|
|
|
|
|
|
|
|
extrema_list = []
|
|
|
|
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.01):
|
|
|
|
extrema_list.append(i)
|
|
|
|
#extrema_list = extrema_list[::-1]
|
|
|
|
|
|
|
|
segments = []
|
|
|
|
for i in all_mins:
|
|
|
|
if new_flat_data[i] < extrema_list[i]:
|
|
|
|
segments.append(i) #-window_size
|
|
|
|
|
|
|
|
|
|
|
|
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, new_flat_data)]
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments, new_flat_data):
|
|
|
|
delete_list = []
|
|
|
|
variance_error = int(0.004 * len(new_flat_data))
|
|
|
|
if variance_error > 100:
|
|
|
|
variance_error = 100
|
|
|
|
for i in range(1, len(segments)):
|
|
|
|
if segments[i] < segments[i - 1] + variance_error:
|
|
|
|
delete_list.append(segments[i])
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
delete_list = []
|
|
|
|
print(self.idrops[0])
|
|
|
|
pattern_data = new_flat_data[self.idrops[0] - 240 : self.idrops[0] + 240]
|
|
|
|
print(self.state['convolve_max'])
|
|
|
|
for segment in segments:
|
|
|
|
if segment > 240:
|
|
|
|
convol_data = new_flat_data[segment - 240 : segment + 240]
|
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
|
|
|
|
if conv[480] > self.state['convolve_max'] * 1.2 or conv[480] < self.state['convolve_max'] * 0.9:
|
|
|
|
delete_list.append(segment)
|
|
|
|
print(segment, conv[480], 0)
|
|
|
|
else:
|
|
|
|
print(segment, conv[480], 1)
|
|
|
|
else:
|
|
|
|
delete_list.append(segment)
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
return segments
|