|
|
|
@ -49,8 +49,8 @@ class StepDetector:
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
|
def __predict(self, data): |
|
|
|
|
all_normal_flatten_data = data.rolling(window=10).mean() |
|
|
|
|
all_max_flatten_data = data.rolling(window=24).mean() |
|
|
|
|
window_size = 24 |
|
|
|
|
all_max_flatten_data = data.rolling(window=window_size).mean() |
|
|
|
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0] |
|
|
|
|
extrema_list = [] |
|
|
|
|
|
|
|
|
@ -60,32 +60,24 @@ class StepDetector:
|
|
|
|
|
segments = [] |
|
|
|
|
for i in all_mins: |
|
|
|
|
if all_max_flatten_data[i] < extrema_list[i]: |
|
|
|
|
segments.append(i - 20) |
|
|
|
|
segments.append(i - window_size) |
|
|
|
|
|
|
|
|
|
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)] |
|
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments, all_max_flatten_data): |
|
|
|
|
delete_list = [] |
|
|
|
|
for i in range(1, len(segments)): |
|
|
|
|
if segments[i] < segments[i-1] + 500: |
|
|
|
|
delete_list.append(segments[i]) |
|
|
|
|
|
|
|
|
|
for i in segments: |
|
|
|
|
new_data = all_max_flatten_data[i-50:i+250] |
|
|
|
|
min_value = 100 |
|
|
|
|
for val in new_data: |
|
|
|
|
if val < min_value: |
|
|
|
|
min_value = val |
|
|
|
|
if all_max_flatten_data[i] > min_value: |
|
|
|
|
delete_list.append(i) |
|
|
|
|
|
|
|
|
|
for item in delete_list: |
|
|
|
|
segments.remove(item) |
|
|
|
|
|
|
|
|
|
# delete_list = [] |
|
|
|
|
# for i in segments: |
|
|
|
|
# new_data = all_max_flatten_data[i-150:i+50] |
|
|
|
|
# min_value = 100 |
|
|
|
|
# for j in new_data: |
|
|
|
|
# if j < min_value: |
|
|
|
|
# min_value = j |
|
|
|
|
# if all_max_flatten_data[i] > min_value: |
|
|
|
|
# delete_list.append(i) |
|
|
|
|
|
|
|
|
|
# for item in delete_list: |
|
|
|
|
# segments.remove(item) |
|
|
|
|
|
|
|
|
|
return segments |
|
|
|
|
|
|
|
|
|
def save(self, model_filename): |
|
|
|
|