Alexey Velikiy
7 years ago
9 changed files with 139 additions and 338 deletions
@ -1,5 +1,5 @@
|
||||
from detectors.general_detector import GeneralDetector |
||||
from detectors.pattern_detection_model import PatternDetectionModel |
||||
from detectors.pattern_detector import PatternDetector |
||||
from detectors.peaks_detector import PeaksDetector |
||||
from detectors.step_detector import StepDetector |
||||
from detectors.jump_detector import Jumpdetector |
||||
|
@ -1,231 +0,0 @@
|
||||
|
||||
""" |
||||
Thomas Kahn |
||||
thomas.b.kahn@gmail.com |
||||
""" |
||||
from __future__ import absolute_import |
||||
from math import sqrt |
||||
import multiprocessing as mp |
||||
import numpy as np |
||||
from six.moves import range |
||||
from six.moves import zip |
||||
|
||||
|
||||
def t_scan(L, window = 1e3, num_workers = -1): |
||||
""" |
||||
Computes t statistic for i to i+window points versus i-window to i |
||||
points for each point i in input array. Uses multiple processes to |
||||
do this calculation asynchronously. Array is decomposed into window |
||||
number of frames, each consisting of points spaced at window |
||||
intervals. This optimizes the calculation, as the drone function |
||||
need only compute the mean and variance for each set once. |
||||
Parameters |
||||
---------- |
||||
L : numpy array |
||||
1 dimensional array that represents time series of datapoints |
||||
window : int / float |
||||
Number of points that comprise the windows of data that are |
||||
compared |
||||
num_workers : int |
||||
Number of worker processes for multithreaded t_stat computation |
||||
Defult value uses num_cpu - 1 workers |
||||
Returns |
||||
------- |
||||
t_stat : numpy array |
||||
Array which holds t statistic values for each point. The first |
||||
and last (window) points are replaced with zero, since the t |
||||
statistic calculation cannot be performed in that case. |
||||
""" |
||||
size = L.size |
||||
window = int(window) |
||||
frames = list(range(window)) |
||||
n_cols = (size // window) - 1 |
||||
|
||||
t_stat = np.zeros((window, n_cols)) |
||||
|
||||
if num_workers == 1: |
||||
results = [_t_scan_drone(L, n_cols, frame, window) for frame in frames] |
||||
else: |
||||
if num_workers == -1: |
||||
num_workers = mp.cpu_count() - 1 |
||||
pool = mp.Pool(processes = num_workers) |
||||
results = [pool.apply_async(_t_scan_drone, args=(L, n_cols, frame, window)) for frame in frames] |
||||
results = [r.get() for r in results] |
||||
pool.close() |
||||
|
||||
for index, row in results: |
||||
t_stat[index] = row |
||||
|
||||
t_stat = np.concatenate(( |
||||
np.zeros(window), |
||||
t_stat.transpose().ravel(order='C'), |
||||
np.zeros(size % window) |
||||
)) |
||||
|
||||
return t_stat |
||||
|
||||
|
||||
def _t_scan_drone(L, n_cols, frame, window=1e3): |
||||
""" |
||||
Drone function for t_scan. Not Intended to be called manually. |
||||
Computes t_scan for the designated frame, and returns result as |
||||
array along with an integer tag for proper placement in the |
||||
aggregate array |
||||
""" |
||||
size = L.size |
||||
window = int(window) |
||||
root_n = sqrt(window) |
||||
|
||||
output = np.zeros(n_cols) |
||||
b = L[frame:window+frame] |
||||
b_mean = b.mean() |
||||
b_var = b.var() |
||||
for i in range(window+frame, size-window, window): |
||||
a = L[i:i+window] |
||||
a_mean = a.mean() |
||||
a_var = a.var() |
||||
output[i // window - 1] = root_n * (a_mean - b_mean) / sqrt(a_var + b_var) |
||||
b_mean, b_var = a_mean, a_var |
||||
|
||||
return frame, output |
||||
|
||||
|
||||
def mz_fwt(x, n=2): |
||||
""" |
||||
Computes the multiscale product of the Mallat-Zhong discrete forward |
||||
wavelet transform up to and including scale n for the input data x. |
||||
If n is even, the spikes in the signal will be positive. If n is odd |
||||
the spikes will match the polarity of the step (positive for steps |
||||
up, negative for steps down). |
||||
This function is essentially a direct translation of the MATLAB code |
||||
provided by Sadler and Swami in section A.4 of the following: |
||||
http://www.dtic.mil/dtic/tr/fulltext/u2/a351960.pdf |
||||
Parameters |
||||
---------- |
||||
x : numpy array |
||||
1 dimensional array that represents time series of data points |
||||
n : int |
||||
Highest scale to multiply to |
||||
Returns |
||||
------- |
||||
prod : numpy array |
||||
The multiscale product for x |
||||
""" |
||||
N_pnts = x.size |
||||
lambda_j = [1.5, 1.12, 1.03, 1.01][0:n] |
||||
if n > 4: |
||||
lambda_j += [1.0]*(n-4) |
||||
|
||||
H = np.array([0.125, 0.375, 0.375, 0.125]) |
||||
G = np.array([2.0, -2.0]) |
||||
|
||||
Gn = [2] |
||||
Hn = [3] |
||||
for j in range(1,n): |
||||
q = 2**(j-1) |
||||
Gn.append(q+1) |
||||
Hn.append(3*q+1) |
||||
|
||||
S = np.concatenate((x[::-1], x)) |
||||
S = np.concatenate((S, x[::-1])) |
||||
prod = np.ones(N_pnts) |
||||
for j in range(n): |
||||
n_zeros = 2**j - 1 |
||||
Gz = _insert_zeros(G, n_zeros) |
||||
Hz = _insert_zeros(H, n_zeros) |
||||
current = (1.0/lambda_j[j])*np.convolve(S,Gz) |
||||
current = current[N_pnts+Gn[j]:2*N_pnts+Gn[j]] |
||||
prod *= current |
||||
if j == n-1: |
||||
break |
||||
S_new = np.convolve(S, Hz) |
||||
S_new = S_new[N_pnts+Hn[j]:2*N_pnts+Hn[j]] |
||||
S = np.concatenate((S_new[::-1], S_new)) |
||||
S = np.concatenate((S, S_new[::-1])) |
||||
return prod |
||||
|
||||
|
||||
def _insert_zeros(x, n): |
||||
""" |
||||
Helper function for mz_fwt. Splits input array and adds n zeros |
||||
between values. |
||||
""" |
||||
newlen = (n+1)*x.size |
||||
out = np.zeros(newlen) |
||||
indices = list(range(0, newlen-n, n+1)) |
||||
out[indices] = x |
||||
return out |
||||
|
||||
|
||||
def find_steps(array, threshold): |
||||
""" |
||||
Finds local maxima by segmenting array based on positions at which |
||||
the threshold value is crossed. Note that this thresholding is |
||||
applied after the absolute value of the array is taken. Thus, |
||||
the distinction between upward and downward steps is lost. However, |
||||
get_step_sizes can be used to determine directionality after the |
||||
fact. |
||||
Parameters |
||||
---------- |
||||
array : numpy array |
||||
1 dimensional array that represents time series of data points |
||||
threshold : int / float |
||||
Threshold value that defines a step |
||||
Returns |
||||
------- |
||||
steps : list |
||||
List of indices of the detected steps |
||||
""" |
||||
steps = [] |
||||
array = np.abs(array) |
||||
above_points = np.where(array > threshold, 1, 0) |
||||
ap_dif = np.diff(above_points) |
||||
cross_ups = np.where(ap_dif == 1)[0] |
||||
cross_dns = np.where(ap_dif == -1)[0] |
||||
for upi, dni in zip(cross_ups,cross_dns): |
||||
steps.append(np.argmax(array[upi:dni]) + upi) |
||||
return steps |
||||
|
||||
|
||||
def get_step_sizes(array, indices, window=1000): |
||||
""" |
||||
Calculates step size for each index within the supplied list. Step |
||||
size is determined by averaging over a range of points (specified |
||||
by the window parameter) before and after the index of step |
||||
occurrence. The directionality of the step is reflected by the sign |
||||
of the step size (i.e. a positive value indicates an upward step, |
||||
and a negative value indicates a downward step). The combined |
||||
standard deviation of both measurements (as a measure of uncertainty |
||||
in step calculation) is also provided. |
||||
Parameters |
||||
---------- |
||||
array : numpy array |
||||
1 dimensional array that represents time series of data points |
||||
indices : list |
||||
List of indices of the detected steps (as provided by |
||||
find_steps, for example) |
||||
window : int, optional |
||||
Number of points to average over to determine baseline levels |
||||
before and after step. |
||||
Returns |
||||
------- |
||||
step_sizes : list |
||||
List of the calculated sizes of each step |
||||
step_error : list |
||||
""" |
||||
step_sizes = [] |
||||
step_error = [] |
||||
indices = sorted(indices) |
||||
last = len(indices) - 1 |
||||
for i, index in enumerate(indices): |
||||
if i == 0: |
||||
q = min(window, indices[i+1]-index) |
||||
elif i == last: |
||||
q = min(window, index - indices[i-1]) |
||||
else: |
||||
q = min(window, index-indices[i-1], indices[i+1]-index) |
||||
a = array[index:index+q] |
||||
b = array[index-q:index] |
||||
step_sizes.append(a.mean() - b.mean()) |
||||
step_error.append(sqrt(a.var()+b.var())) |
||||
return step_sizes, step_error |
Loading…
Reference in new issue