Browse Source

Split out models from detectors #98 (#101)

* Create abstract model class

* Move detectors/*_detector -> models/*_model

* Update Model class

* Change detectors to models and move fields to self.state

* Use models instead of detectors in PatternDetector

* Update inits in detectors/ and models/

* Add types to resolve_model_by_pattern

* Add types to abstract Model class
pull/1/head
rozetko 7 years ago committed by Alexey Velikiy
parent
commit
b86da0fcae
  1. 6
      analytics/detectors/__init__.py
  2. 14
      analytics/detectors/pattern_detector.py
  3. 4
      analytics/models/__init__.py
  4. 41
      analytics/models/jump_model.py
  5. 30
      analytics/models/model.py
  6. 17
      analytics/models/peaks_model.py
  7. 35
      analytics/models/step_model.py

6
analytics/detectors/__init__.py

@ -1,5 +1,3 @@
from detectors.general_detector import GeneralDetector
from detectors.pattern_detector import PatternDetector
from detectors.peaks_detector import PeaksDetector
from detectors.step_detector import StepDetector
from detectors.jump_detector import JumpDetector
# TODO: do something with general detector
from detectors.general_detector import GeneralDetector

14
analytics/detectors/pattern_detector.py

@ -1,4 +1,4 @@
import detectors
import models
import utils
from grafana_data_provider import GrafanaDataProvider
@ -16,13 +16,13 @@ logger = logging.getLogger('analytic_toolset')
def resolve_detector_by_pattern(pattern):
def resolve_model_by_pattern(pattern: str) -> models.Model:
if pattern == 'peak':
return detectors.PeaksDetector()
return models.PeaksModel()
if pattern == 'drop':
return detectors.StepDetector()
return models.StepModel()
if pattern == 'jump':
return detectors.JumpDetector()
return models.JumpModel()
raise ValueError('Unknown pattern "%s"' % pattern)
@ -53,7 +53,7 @@ class PatternDetector:
self.__load_model(pattern_type)
async def learn(self, segments):
self.model = resolve_detector_by_pattern(self.pattern_type)
self.model = resolve_model_by_pattern(self.pattern_type)
window_size = 200
dataframe = self.data_prov.get_dataframe()
@ -109,5 +109,5 @@ class PatternDetector:
logger.info("Load model '%s'" % self.analytic_unit_id)
model_filename = os.path.join(config.MODELS_FOLDER, self.pattern_type + ".m")
if os.path.exists(model_filename):
self.model = resolve_detector_by_pattern(pattern)
self.model = resolve_model_by_pattern(pattern)
self.model.load(model_filename)

4
analytics/models/__init__.py

@ -0,0 +1,4 @@
from models.model import Model
from models.step_model import StepModel
from models.peaks_model import PeaksModel
from models.jump_model import JumpModel

41
analytics/detectors/jump_detector.py → analytics/models/jump_model.py

@ -1,22 +1,26 @@
from models import Model
import utils
import numpy as np
import pickle
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
import math
WINDOW_SIZE = 120
class JumpDetector:
class JumpModel(Model):
def __init__(self):
self.segments = []
self.confidence = 1.5
self.convolve_max = WINDOW_SIZE
self.size = 50
super()
self.state = {
'confidence': 1.5,
'convolve_max': WINDOW_SIZE
}
async def fit(self, dataframe, segments):
self.segments = segments
#self.alpha_finder()
data = dataframe['value']
confidences = []
@ -59,14 +63,14 @@ class JumpDetector:
if len(confidences) > 0:
self.confidence = min(confidences)
self.state['confidence'] = min(confidences)
else:
self.confidence = 1.5
self.state['confidence'] = 1.5
if len(convolve_list) > 0:
self.convolve_max = max(convolve_list)
self.state['convolve_max'] = max(convolve_list)
else:
self.convolve_max = WINDOW_SIZE # макс метрика свертки равна отступу(WINDOW_SIZE), вау!
self.state['convolve_max'] = WINDOW_SIZE # макс метрика свертки равна отступу(WINDOW_SIZE), вау!
async def predict(self, dataframe):
data = dataframe['value']
@ -82,10 +86,10 @@ class JumpDetector:
window_size = 24
all_max_flatten_data = data.rolling(window=window_size).mean()
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
possible_jumps = utils.find_all_jumps(all_max_flatten_data, 50, self.confidence)
possible_jumps = utils.find_all_jumps(all_max_flatten_data, 50, self.state['confidence'])
'''
for i in utils.exponential_smoothing(data + self.confidence, 0.02):
for i in utils.exponential_smoothing(data + self.state['confidence'], 0.02):
extrema_list.append(i)
segments = []
@ -117,24 +121,13 @@ class JumpDetector:
for segment in segments:
convol_data = all_max_flatten_data[segment - WINDOW_SIZE : segment + WINDOW_SIZE]
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9:
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_max'] * 0.9:
delete_list.append(segment)
for item in delete_list:
segments.remove(item)
return segments
def save(self, model_filename):
with open(model_filename, 'wb') as file:
pickle.dump((self.confidence, self.convolve_max), file)
def load(self, model_filename):
try:
with open(model_filename, 'rb') as file:
(self.confidence, self.convolve_max) = pickle.load(file)
except:
pass
def alpha_finder(self, data):
"""
поиск альфы для логистической сигмоиды

30
analytics/models/model.py

@ -0,0 +1,30 @@
from abc import ABC, abstractmethod
from pandas import DataFrame
import pickle
class Model(ABC):
def __init__(self):
"""
Variables which are obtained as a result of fit() method
should be stored in self.state dict
in order to be saved in model file
"""
self.state = {}
self.segments = []
@abstractmethod
async def fit(self, dataframe: DataFrame, segments: list):
pass
@abstractmethod
async def predict(self, dataframe: DataFrame) -> list:
pass
def save(self, model_filename: str):
with open(model_filename, 'wb') as file:
pickle.dump(self.state, file)
def load(self, model_filename: str):
with open(model_filename, 'rb') as f:
self.state = pickle.load(f)

17
analytics/detectors/peaks_detector.py → analytics/models/peaks_model.py

@ -1,11 +1,14 @@
from models import Model
import utils
from scipy import signal
import numpy as np
class PeaksDetector:
class PeaksModel(Model):
def __init__(self):
pass
super()
async def fit(self, dataset, contamination=0.005):
pass
@ -53,13 +56,3 @@ class PeaksDetector:
result = utils.find_steps(data, 0.1)
return [(dataframe.index[x], dataframe.index[x + window_size]) for x in result]
def save(self, model_filename):
pass
# with open(model_filename, 'wb') as file:
# pickle.dump((self.clf, self.scaler), file)
def load(self, model_filename):
pass
# with open(model_filename, 'rb') as file:
# self.clf, self.scaler = pickle.load(file)

35
analytics/detectors/step_detector.py → analytics/models/step_model.py

@ -1,3 +1,5 @@
from models import Model
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
@ -7,14 +9,18 @@ import numpy as np
import pickle
class StepDetector:
class StepModel(Model):
def __init__(self):
super()
self.segments = []
self.confidence = 1.5
self.convolve_max = 570000
self.state = {
'confidence': 1.5,
'convolve_max': 570000
}
async def fit(self, dataframe, segments):
self.segments = segments
data = dataframe['value']
confidences = []
convolve_list = []
@ -32,14 +38,14 @@ class StepDetector:
convolve_list.append(max(convolve))
if len(confidences) > 0:
self.confidence = min(confidences)
self.state['confidence'] = min(confidences)
else:
self.confidence = 1.5
self.state['confidence'] = 1.5
if len(convolve_list) > 0:
self.convolve_max = max(convolve_list)
self.state['convolve_max'] = max(convolve_list)
else:
self.convolve_max = 570000
self.state['convolve_max'] = 570000
async def predict(self, dataframe):
data = dataframe['value']
@ -57,7 +63,7 @@ class StepDetector:
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
extrema_list = []
for i in utils.exponential_smoothing(data - self.confidence, 0.03):
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.03):
extrema_list.append(i)
segments = []
@ -83,20 +89,9 @@ class StepDetector:
for segment in segments:
convol_data = all_max_flatten_data[segment - 120 : segment + 120]
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9:
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_max'] * 0.9:
delete_list.append(segment)
for item in delete_list:
segments.remove(item)
return segments
def save(self, model_filename):
with open(model_filename, 'wb') as file:
pickle.dump((self.confidence, self.convolve_max), file)
def load(self, model_filename):
try:
with open(model_filename, 'rb') as file:
(self.confidence, self.convolve_max) = pickle.load(file)
except:
pass
Loading…
Cancel
Save