Browse Source

good analytics type names

pull/1/head
Alexey Velikiy 6 years ago
parent
commit
862e1edb7c
  1. 4
      analytics/detectors/pattern_detection_model.py
  2. 1
      analytics/detectors/peaks_detector.py
  3. 7
      analytics/detectors/step_detector.py
  4. 8
      analytics/worker.py

4
analytics/detectors/pattern_detection_model.py

@ -97,9 +97,9 @@ class PatternDetectionModel:
self.data_prov.synchronize()
def __create_model(self, pattern):
if pattern == "peaks":
if pattern == "peak":
return PeaksDetector()
if pattern == "jumps" or pattern == "drops":
if pattern == "jump" or pattern == "drop":
return StepDetector(pattern)
raise ValueError('Unknown pattern "%s"' % pattern)

1
analytics/detectors/peaks_detector.py

@ -4,7 +4,6 @@ from scipy import signal
import numpy as np
class PeaksDetector:
def __init__(self):
pass

7
analytics/detectors/step_detector.py

@ -1,9 +1,12 @@
import numpy as np
import pickle
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
import numpy as np
import pickle
def is_intersect(target_segment, segments):
for segment in segments:
start = max(segment['start'], target_segment[0])

8
analytics/worker.py

@ -75,7 +75,7 @@ class Worker(object):
last_prediction_time = model.learn(segments)
# TODO: we should not do predict before labeling in all models, not just in drops
if pattern == 'drops' and len(segments) == 0:
if pattern == 'drop' and len(segments) == 0:
# TODO: move result to a class which renders to json for messaging to analytics
result = {
'status': 'success',
@ -101,12 +101,12 @@ class Worker(object):
'lastPredictionTime': last_prediction_time
}
def get_model(self, analytic_unit_id, pattern):
def get_model(self, analytic_unit_id, pattern_type):
if analytic_unit_id not in self.models_cache:
if pattern.find('general') != -1:
if pattern_type == 'general':
model = GeneralDetector(analytic_unit_id)
else:
model = PatternDetectionModel(analytic_unit_id, pattern)
model = PatternDetectionModel(analytic_unit_id, pattern_type)
self.models_cache[analytic_unit_id] = model
return self.models_cache[analytic_unit_id]

Loading…
Cancel
Save