You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

139 lines
5.7 KiB

from models import Model, AnalyticUnitCache
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
from scipy.stats import gaussian_kde
7 years ago
import utils
import numpy as np
import pandas as pd
from typing import Optional
WINDOW_SIZE = 200
class DropModel(Model):
def __init__(self):
super()
7 years ago
self.segments = []
self.idrops = []
self.state = {
'confidence': 1.5,
'convolve_max': WINDOW_SIZE,
'DROP_HEIGHT': 1,
'DROP_LENGTH': 1,
}
def fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> AnalyticUnitCache:
if type(cache) is AnalyticUnitCache:
self.state = cache
self.segments = segments
data = dataframe['value']
confidences = []
convolve_list = []
drop_height_list = []
drop_length_list = []
for segment in segments:
if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0:
continue
segment_min = min(segment_data)
segment_max = max(segment_data)
confidences.append(0.20 * (segment_max - segment_min))
flat_segment = segment_data.rolling(window=5).mean()
pdf = gaussian_kde(flat_segment.dropna())
x = np.linspace(flat_segment.dropna().min(), flat_segment.dropna().max(), len(flat_segment.dropna()))
y = pdf(x)
ax_list = []
for i in range(len(x)):
ax_list.append([x[i], y[i]])
ax_list = np.array(ax_list, np.float32)
antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0]
peaks_kde = argrelextrema(np.array(ax_list), np.greater)[0]
min_peak_index = peaks_kde[0]
max_peak_index = peaks_kde[1]
segment_median = ax_list[antipeaks_kde[0], 0]
segment_min_line = ax_list[min_peak_index, 0]
segment_max_line = ax_list[max_peak_index, 0]
drop_height = 0.95 * (segment_max_line - segment_min_line)
drop_height_list.append(drop_height)
drop_length = utils.find_drop_length(segment_data, segment_min_line, segment_max_line)
drop_length_list.append(drop_length)
cen_ind = utils.drop_intersection(flat_segment, segment_median) #finds all interseprions with median
drop_center = cen_ind[0]
segment_cent_index = drop_center - 5 + segment_from_index
self.idrops.append(segment_cent_index)
labeled_drop = data[segment_cent_index - WINDOW_SIZE : segment_cent_index + WINDOW_SIZE]
labeled_min = min(labeled_drop)
for value in labeled_drop:
value = value - labeled_min
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
convolve_list.append(max(convolve))
if len(confidences) > 0:
self.state['confidence'] = float(min(confidences))
else:
self.state['confidence'] = 1.5
7 years ago
if len(convolve_list) > 0:
self.state['convolve_max'] = float(max(convolve_list))
else:
self.state['convolve_max'] = WINDOW_SIZE
if len(drop_height_list) > 0:
self.state['DROP_HEIGHT'] = int(min(drop_height_list))
else:
self.state['DROP_HEIGHT'] = 1
if len(drop_length_list) > 0:
self.state['DROP_LENGTH'] = int(max(drop_length_list))
else:
self.state['DROP_LENGTH'] = 1
7 years ago
return self.state
7 years ago
def do_predict(self, dataframe: pd.DataFrame) -> list:
data = dataframe['value']
possible_drops = utils.find_drop(data, self.state['DROP_HEIGHT'], self.state['DROP_LENGTH'] + 1)
filtered = self.__filter_prediction(possible_drops, data)
# TODO: convert from ns to ms more proper way (not dividing by 10^6)
return [(dataframe['timestamp'][x - 1].value / 1000000, dataframe['timestamp'][x + 1].value / 1000000) for x in filtered]
def __filter_prediction(self, segments: list, data: list):
6 years ago
delete_list = []
variance_error = int(0.004 * len(data))
if variance_error > 50:
variance_error = 50
for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error:
delete_list.append(segments[i])
# for item in delete_list:
# segments.remove(item)
delete_list = []
if len(segments) == 0 or len(self.idrops) == 0 :
segments = []
return segments
pattern_data = data[self.idrops[0] - WINDOW_SIZE : self.idrops[0] + WINDOW_SIZE]
for segment in segments:
if segment > WINDOW_SIZE and segment < (len(data) - WINDOW_SIZE):
convol_data = data[segment - WINDOW_SIZE : segment + WINDOW_SIZE]
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if conv[WINDOW_SIZE*2] > self.state['convolve_max'] * 1.2 or conv[WINDOW_SIZE*2] < self.state['convolve_max'] * 0.8:
delete_list.append(segment)
else:
delete_list.append(segment)
# TODO: implement filtering
# for item in delete_list:
# segments.remove(item)
6 years ago
return set(segments)