You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

130 lines
5.4 KiB

from models import Model
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
from scipy.stats import gaussian_kde
7 years ago
import utils
import numpy as np
import pandas as pd
class DropModel(Model):
def __init__(self):
super()
7 years ago
self.segments = []
self.idrops = []
self.state = {
'confidence': 1.5,
'convolve_max': 200,
'DROP_HEIGHT': 1,
'DROP_LENGTH': 1,
'WINDOW_SIZE': 240,
}
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None:
data = dataframe['value']
confidences = []
convolve_list = []
drop_height_list = []
drop_length_list = []
for segment in segments:
if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0:
continue
segment_min = min(segment_data)
segment_max = max(segment_data)
confidences.append(0.20 * (segment_max - segment_min))
flat_segment = segment_data.rolling(window=5).mean()
pdf = gaussian_kde(flat_segment.dropna())
x = np.linspace(flat_segment.dropna().min(), flat_segment.dropna().max(), len(flat_segment.dropna()))
y = pdf(x)
ax_list = []
for i in range(len(x)):
ax_list.append([x[i], y[i]])
ax_list = np.array(ax_list, np.float32)
antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0]
peaks_kde = argrelextrema(np.array(ax_list), np.greater)[0]
min_peak_index = peaks_kde[0]
max_peak_index = peaks_kde[1]
segment_median = ax_list[antipeaks_kde[0], 0]
segment_min_line = ax_list[min_peak_index, 0]
segment_max_line = ax_list[max_peak_index, 0]
drop_height = 0.95 * (segment_max_line - segment_min_line)
drop_height_list.append(drop_height)
drop_length = utils.find_drop_length(segment_data, segment_min_line, segment_max_line)
drop_length_list.append(drop_length)
cen_ind = utils.drop_intersection(flat_segment, segment_median) #finds all interseprions with median
drop_center = cen_ind[0]
segment_cent_index = drop_center - 5 + segment_from_index
self.idrops.append(segment_cent_index)
labeled_drop = data[segment_cent_index - self.state['WINDOW_SIZE']: segment_cent_index + self.state['WINDOW_SIZE']]
labeled_min = min(labeled_drop)
for value in labeled_drop:
value = value - labeled_min
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
convolve_list.append(max(convolve))
if len(confidences) > 0:
self.state['confidence'] = float(min(confidences))
else:
self.state['confidence'] = 1.5
7 years ago
if len(convolve_list) > 0:
self.state['convolve_max'] = float(max(convolve_list))
else:
self.state['convolve_max'] = self.state['WINDOW_SIZE']
if len(drop_height_list) > 0:
self.state['DROP_HEIGHT'] = int(min(drop_height_list))
else:
self.state['DROP_HEIGHT'] = 1
if len(drop_length_list) > 0:
self.state['DROP_LENGTH'] = int(max(drop_length_list))
else:
self.state['DROP_LENGTH'] = 1
7 years ago
def do_predict(self, dataframe: pd.DataFrame) -> list:
data = dataframe['value']
possible_drops = utils.find_drop(data, self.state['DROP_HEIGHT'], self.state['DROP_LENGTH'] + 1)
return self.__filter_prediction(possible_drops, data)
def __filter_prediction(self, segments: list, data: list):
7 years ago
delete_list = []
variance_error = int(0.004 * len(data))
if variance_error > 50:
variance_error = 50
for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error:
delete_list.append(segments[i])
# for item in delete_list:
# segments.remove(item)
delete_list = []
if len(segments) == 0 or len(self.idrops) == 0 :
segments = []
return segments
pattern_data = data[self.idrops[0] - self.state['WINDOW_SIZE'] : self.idrops[0] + self.state['WINDOW_SIZE']]
for segment in segments:
if segment > self.state['WINDOW_SIZE'] and segment < (len(data) - self.state['WINDOW_SIZE']):
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE']]
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if conv[self.state['WINDOW_SIZE']*2] > self.state['convolve_max'] * 1.2 or conv[self.state['WINDOW_SIZE']*2] < self.state['convolve_max'] * 0.8:
delete_list.append(segment)
else:
delete_list.append(segment)
# TODO: implement filtering
# for item in delete_list:
# segments.remove(item)
6 years ago
return set(segments)