You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

91 lines
2.7 KiB

import models
import utils
# from grafana_data_provider import GrafanaDataProvider
7 years ago
import logging
from urllib.parse import urlparse
7 years ago
import os.path
import json
7 years ago
import config
7 years ago
import pandas as pd
7 years ago
7 years ago
logger = logging.getLogger('analytic_toolset')
def resolve_model_by_pattern(pattern: str) -> models.Model:
if pattern == 'PEAK':
return models.PeaksModel()
if pattern == 'DROP':
return models.StepModel()
if pattern == 'JUMP':
return models.JumpModel()
if pattern == 'CUSTOM':
6 years ago
return models.CustomModel()
raise ValueError('Unknown pattern "%s"' % pattern)
7 years ago
class PatternDetector:
7 years ago
def __init__(self, analytic_unit_id, pattern_type):
self.analytic_unit_id = analytic_unit_id
self.pattern_type = pattern_type
7 years ago
self.model = None
self.__load_model(pattern_type)
7 years ago
async def learn(self, segments):
self.model = resolve_model_by_pattern(self.pattern_type)
7 years ago
window_size = 200
dataframe = self.data_prov.get_dataframe()
segments = self.data_prov.transform_anomalies(segments)
# TODO: pass only part of dataframe that has segments
6 years ago
self.model.fit(dataframe, segments)
7 years ago
self.__save_model()
return 0
async def predict(self, last_prediction_time):
7 years ago
if self.model is None:
return [], last_prediction_time
window_size = 100
last_prediction_time = pd.to_datetime(last_prediction_time, unit='ms')
start_index = self.data_prov.get_upper_bound(last_prediction_time)
start_index = max(0, start_index - window_size)
dataframe = self.data_prov.get_data_range(start_index)
6 years ago
predicted_indexes = self.model.predict(dataframe)
7 years ago
predicted_indexes = [(x, y) for (x, y) in predicted_indexes if x >= start_index and y >= start_index]
predicted_times = self.data_prov.inverse_transform_indexes(predicted_indexes)
segments = []
for time_value in predicted_times:
ts1 = int(time_value[0].timestamp() * 1000)
ts2 = int(time_value[1].timestamp() * 1000)
segments.append({
'start': min(ts1, ts2),
'finish': max(ts1, ts2)
7 years ago
})
last_dataframe_time = dataframe.iloc[-1]['timestamp']
7 years ago
last_prediction_time = int(last_dataframe_time.timestamp() * 1000)
return segments, last_prediction_time
# return predicted_anomalies, last_prediction_time
def synchronize_data(self):
self.data_prov.synchronize()
def __save_model(self):
pass
# TODO: use data_service to save anything
7 years ago
def __load_model(self, pattern):
pass
# TODO: use data_service to save anything