Browse Source

remove all fs-releated and grafana logic. Use analytics_service / data_service instead

pull/1/head
Coin de Gamma 7 years ago
parent
commit
bd4f9e0172
  1. 9
      analytics/config.py
  2. 31
      analytics/detectors/general_detector/general_detector.py
  3. 27
      analytics/detectors/pattern_detector.py
  4. 229
      analytics/grafana_data_provider.py

9
analytics/config.py

@ -3,7 +3,6 @@ import json
PARENT_FOLDER = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
DATA_FOLDER = os.path.join(PARENT_FOLDER, 'data')
CONFIG_FILE = os.path.join(PARENT_FOLDER, 'config.json')
@ -14,7 +13,6 @@ if config_exists:
def get_config_field(field, default_val = None):
if field in os.environ:
return os.environ[field]
@ -26,12 +24,5 @@ def get_config_field(field, default_val = None):
raise Exception('Please configure {}'.format(field))
DATASET_FOLDER = os.path.join(DATA_FOLDER, 'datasets')
MODELS_FOLDER = os.path.join(DATA_FOLDER, 'models')
METRICS_FOLDER = os.path.join(DATA_FOLDER, 'metrics')
HASTIC_API_KEY = get_config_field('HASTIC_API_KEY')
ZMQ_DEV_PORT = get_config_field('ZMQ_DEV_PORT', '8002')
ZMQ_CONNECTION_STRING = get_config_field('ZMQ_CONNECTION_STRING', 'tcp://*:%s' % ZMQ_DEV_PORT)

31
analytics/detectors/general_detector/general_detector.py

@ -17,28 +17,9 @@ logger = logging.getLogger('analytic_toolset')
class GeneralDetector:
def __init__(self, anomaly_name):
def __init__(self, anomaly_name, data):
self.anomaly_name = anomaly_name
parsedUrl = urlparse(self.anomaly_config['panelUrl'])
origin = parsedUrl.scheme + '://' + parsedUrl.netloc
datasource = self.anomaly_config['datasource']
datasource['origin'] = origin
metric_name = self.anomaly_config['metric']['targets'][0]
target_filename = os.path.join(config.METRICS_FOLDER, metric_name + ".json")
dataset_filename = os.path.join(config.DATASET_FOLDER, metric_name + ".csv")
augmented_path = os.path.join(config.DATASET_FOLDER, metric_name + "_augmented.csv")
with open(target_filename, 'r') as file:
target = json.load(file)
self.data_prov = GrafanaDataProvider(datasource, target, dataset_filename)
self.preprocessor = data_preprocessor(self.data_prov, augmented_path)
self.model = None
self.__load_model()
async def learn(self, segments):
@ -112,13 +93,7 @@ class GeneralDetector:
return SupervisedAlgorithm()
def __save_model(self):
logger.info("Save model '%s'" % self.anomaly_name)
model_filename = os.path.join(config.MODELS_FOLDER, self.anomaly_name + ".m")
self.model.save(model_filename)
# TODO: use data_service to save anything
def __load_model(self):
logger.info("Load model '%s'" % self.anomaly_name)
model_filename = os.path.join(config.MODELS_FOLDER, self.anomaly_name + ".m")
if os.path.exists(model_filename):
self.model = self.create_algorithm()
self.model.load(model_filename)
# TODO: use data_service to save anything

27
analytics/detectors/pattern_detector.py

@ -34,23 +34,6 @@ class PatternDetector:
self.analytic_unit_id = analytic_unit_id
self.pattern_type = pattern_type
self.__load_anomaly_config()
parsedUrl = urlparse(self.anomaly_config['panelUrl'])
origin = parsedUrl.scheme + '://' + parsedUrl.netloc
datasource = self.anomaly_config['datasource']
metric_name = self.anomaly_config['metric']['targets'][0]
target_filename = os.path.join(config.METRICS_FOLDER, metric_name + ".json")
datasource['origin'] = origin
dataset_filename = os.path.join(config.DATASET_FOLDER, metric_name + ".csv")
with open(target_filename, 'r') as file:
target = json.load(file)
self.data_prov = GrafanaDataProvider(datasource, target, dataset_filename)
self.model = None
self.__load_model(pattern_type)
@ -99,13 +82,7 @@ class PatternDetector:
self.data_prov.synchronize()
def __save_model(self):
logger.info("Save model '%s'" % self.analytic_unit_id)
model_filename = os.path.join(config.MODELS_FOLDER, self.analytic_unit_id + ".m")
self.model.save(model_filename)
# TODO: use data_service to save anything
def __load_model(self, pattern):
logger.info("Load model '%s'" % self.analytic_unit_id)
model_filename = os.path.join(config.MODELS_FOLDER, self.pattern_type + ".m")
if os.path.exists(model_filename):
self.model = resolve_model_by_pattern(pattern)
self.model.load(model_filename)
# TODO: use data_service to save anything

229
analytics/grafana_data_provider.py

@ -1,229 +0,0 @@
import pandas as pd
import os, re
import numpy as np
from urllib.parse import urlencode, urlparse
import urllib.request
import json
from time import time
from config import HASTIC_API_KEY
MS_IN_WEEK = 604800000
class GrafanaDataProvider:
chunk_size = 50000
def __init__(self, datasource, target, data_filename):
self.datasource = datasource
self.target = target
self.data_filename = data_filename
self.last_time = None
self.total_size = 0
self.last_chunk_index = 0
self.chunk_last_times = {}
self.__init_chunks()
self.synchronize()
def get_dataframe(self, after_time=None):
result = pd.DataFrame()
for chunk_index, last_chunk_time in self.chunk_last_times.items():
if after_time is None or after_time <= last_chunk_time:
chunk = self.__load_chunk(chunk_index)
if after_time is not None:
chunk = chunk[chunk['timestamp'] >= after_time]
result = pd.concat([result, chunk])
return result
def get_upper_bound(self, after_time):
for chunk_index, last_chunk_time in self.chunk_last_times.items():
if after_time < last_chunk_time:
chunk = self.__load_chunk(chunk_index)
chunk = chunk[chunk['timestamp'] >= after_time]
return chunk.index[0]
return self.size()
def size(self):
return self.total_size
def get_data_range(self, start_index, stop_index=None):
return self.__get_data(start_index, stop_index)
def transform_anomalies(self, anomalies):
result = []
if len(anomalies) == 0:
return result
dataframe = self.get_dataframe(None)
for anomaly in anomalies:
start_time = pd.to_datetime(anomaly['start'] - 1, unit='ms')
finish_time = pd.to_datetime(anomaly['finish'] + 1, unit='ms')
current_index = (dataframe['timestamp'] >= start_time) & (dataframe['timestamp'] <= finish_time)
anomaly_frame = dataframe[current_index]
if anomaly_frame.empty:
continue
cur_anomaly = {
'start': anomaly_frame.index[0],
'finish': anomaly_frame.index[len(anomaly_frame) - 1],
'labeled': anomaly['labeled']
}
result.append(cur_anomaly)
return result
def inverse_transform_indexes(self, indexes):
if len(indexes) == 0:
return []
dataframe = self.get_data_range(indexes[0][0], indexes[-1][1] + 1)
return [(dataframe['timestamp'][i1], dataframe['timestamp'][i2]) for (i1, i2) in indexes]
def synchronize(self):
append_dataframe = self.load_from_db(self.last_time)
self.__append_data(append_dataframe)
def custom_query(self, after_time, before_time = None):
if self.datasource['type'] == 'influxdb':
query = self.datasource['params']['q']
if after_time is not None:
if before_time is not None:
timeFilter = 'time >= %s AND time <= %s' % (after_time, before_time)
else:
timeFilter = 'time >= "%s"' % (str(after_time))
else:
timeFilter = 'time > 0ms'
query = re.sub(r'(?:time >.+?)(GROUP.+)*$', timeFilter + r' \1', query)
return query
else:
raise 'Datasource type ' + self.datasource['type'] + ' is not supported yet'
def load_from_db(self, after_time=None):
result = self.__load_data_chunks(after_time)
if result == None or len(result['values']) == 0:
dataframe = pd.DataFrame([])
else:
dataframe = pd.DataFrame(result['values'], columns = result['columns'])
cols = dataframe.columns.tolist()
cols.remove('time')
cols = ['time'] + cols
dataframe = dataframe[cols]
dataframe['time'] = pd.to_datetime(dataframe['time'], unit='ms')
dataframe = dataframe.dropna(axis=0, how='any')
return dataframe
def __load_data_chunks(self, after_time = None):
params = self.datasource['params']
if after_time == None:
res = {
'columns': [],
'values': []
}
after_time = int(time() * 1000 - MS_IN_WEEK)
before_time = int(time() * 1000)
while True:
params['q'] = self.custom_query(str(after_time) + 'ms', str(before_time) + 'ms')
serie = self.__query_grafana(params)
if serie != None:
res['columns'] = serie['columns']
res['values'] += serie['values']
after_time -= MS_IN_WEEK
before_time -= MS_IN_WEEK
else:
return res
else:
params['q'] = self.custom_query(str(after_time))
return self.__query_grafana(params)
def __query_grafana(self, params):
headers = { 'Authorization': 'Bearer ' + HASTIC_API_KEY }
url = self.datasource['origin'] + '/' + self.datasource['url'] + '?' + urlencode(params)
req = urllib.request.Request(url, headers=headers)
with urllib.request.urlopen(req) as resp:
res = json.loads(resp.read().decode('utf-8'))['results'][0]
if 'series' in res:
return res['series'][0]
else:
return None
def __init_chunks(self):
chunk_index = 0
self.last_chunk_index = 0
while True:
filename = self.data_filename
if chunk_index > 0:
filename += "." + str(chunk_index)
if os.path.exists(filename):
self.last_chunk_index = chunk_index
chunk = self.__load_chunk(chunk_index)
chunk_last_time = chunk.iloc[len(chunk) - 1]['timestamp']
self.chunk_last_times[chunk_index] = chunk_last_time
self.last_time = chunk_last_time
else:
break
chunk_index += 1
self.total_size = self.last_chunk_index * self.chunk_size
last_chunk = self.__load_chunk(self.last_chunk_index)
self.total_size += len(last_chunk)
def __load_chunk(self, index):
filename = self.data_filename
if index > 0:
filename += "." + str(index)
if os.path.exists(filename):
chunk = pd.read_csv(filename, parse_dates=[0])
frame_index = np.arange(index * self.chunk_size, index * self.chunk_size + len(chunk))
chunk = chunk.set_index(frame_index)
return chunk.rename(columns={chunk.columns[0]: "timestamp", chunk.columns[1]: "value"})
return pd.DataFrame()
def __save_chunk(self, index, dataframe):
filename = self.data_filename
if index > 0:
filename += "." + str(index)
chunk_last_time = dataframe.iloc[len(dataframe) - 1]['time']
self.chunk_last_times[index] = chunk_last_time
if os.path.exists(filename):
dataframe.to_csv(filename, mode='a', index=False, header=False)
else:
dataframe.to_csv(filename, mode='w', index=False, header=True)
def __append_data(self, dataframe):
while len(dataframe) > 0:
chunk = self.__load_chunk(self.last_chunk_index)
rows_count = min(self.chunk_size - len(chunk), len(dataframe))
rows = dataframe.iloc[0:rows_count]
if len(rows) > 0:
self.__save_chunk(self.last_chunk_index, rows)
self.total_size += rows_count
self.last_time = rows.iloc[-1]['time']
dataframe = dataframe[rows_count:]
if len(dataframe) > 0:
self.last_chunk_index += 1
def __get_data(self, start_index, stop_index):
result = pd.DataFrame()
start_chunk = start_index // self.chunk_size
finish_chunk = self.last_chunk_index
if stop_index is not None:
finish_chunk = stop_index // self.chunk_size
for chunk_num in range(start_chunk, finish_chunk + 1):
chunk = self.__load_chunk(chunk_num)
if stop_index is not None and chunk_num == finish_chunk:
chunk = chunk[:stop_index % self.chunk_size]
if chunk_num == start_chunk:
chunk = chunk[start_index % self.chunk_size:]
result = pd.concat([result, chunk])
return result
Loading…
Cancel
Save