|
|
|
from models import Model
|
|
|
|
|
|
|
|
import utils
|
|
|
|
import numpy as np
|
|
|
|
import scipy.signal
|
|
|
|
from scipy.fftpack import fft
|
|
|
|
from scipy.signal import argrelextrema
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
WINDOW_SIZE = 120
|
|
|
|
|
|
|
|
class JumpModel(Model):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super()
|
|
|
|
self.state = {
|
|
|
|
'confidence': 1.5,
|
|
|
|
'convolve_max': WINDOW_SIZE
|
|
|
|
}
|
|
|
|
|
|
|
|
def fit(self, dataframe, segments):
|
|
|
|
self.segments = segments
|
|
|
|
#self.alpha_finder()
|
|
|
|
data = dataframe['value']
|
|
|
|
confidences = []
|
|
|
|
convolve_list = []
|
|
|
|
for segment in segments:
|
|
|
|
if segment['labeled']:
|
|
|
|
segment_data = data[segment['start'] : segment['finish'] + 1]
|
|
|
|
segment_min = min(segment_data)
|
|
|
|
segment_max = max(segment_data)
|
|
|
|
confidences.append(0.20 * (segment_max - segment_min))
|
|
|
|
flat_segment = segment_data.rolling(window=4).mean() #сглаживаем сегмент
|
|
|
|
kde_segment = flat_data.dropna().plot.kde() # distribution density
|
|
|
|
ax_list = kde_segment.get_lines()[0].get_xydata() #take coordinates of kde
|
|
|
|
mids = argrelextrema(np.array(ax_list), np.less)[0]
|
|
|
|
maxs = argrelextrema(np.array(ax_list), np.greater)[0]
|
|
|
|
min_peak = maxs[0]
|
|
|
|
max_peak = maxs[1]
|
|
|
|
min_line = ax_list[min_peak, 0]
|
|
|
|
max_line = ax_list[max_peak, 0]
|
|
|
|
sigm_heidht = max_line - min_line
|
|
|
|
pat_sigm = utils.logistic_sigmoid(-WINDOW_SIZE, WINDOW_SIZE, 1, sigm_heidht)
|
|
|
|
for i in range(0, len(pat_sigm)):
|
|
|
|
pat_sigm[i] = pat_sigm[i] + min_line
|
|
|
|
cen_ind = utils.intersection_segment(flat_segment, mids[0]) #finds all interseprions with median
|
|
|
|
c = [] # choose the correct one interseption by convolve
|
|
|
|
jump_center = utils.find_jump_center(cen_ind)
|
|
|
|
|
|
|
|
segment_cent_index = jump_center - 4
|
|
|
|
labeled_drop = data[segment_cent_index - WINDOW_SIZE : segment_cent_index + WINDOW_SIZE]
|
|
|
|
labeled_min = min(labeled_drop)
|
|
|
|
for value in labeled_drop: # обрезаем
|
|
|
|
value = value - labeled_min
|
|
|
|
labeled_max = max(labeled_drop)
|
|
|
|
for value in labeled_drop: # нормируем
|
|
|
|
value = value / labeled_max
|
|
|
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
|
|
|
|
convolve_list.append(max(convolve)) # сворачиваем паттерн
|
|
|
|
# TODO: add convolve with alpha sigmoid
|
|
|
|
# TODO: add size of jump rize
|
|
|
|
|
|
|
|
|
|
|
|
if len(confidences) > 0:
|
|
|
|
self.state['confidence'] = min(confidences)
|
|
|
|
else:
|
|
|
|
self.state['confidence'] = 1.5
|
|
|
|
|
|
|
|
if len(convolve_list) > 0:
|
|
|
|
self.state['convolve_max'] = max(convolve_list)
|
|
|
|
else:
|
|
|
|
self.state['convolve_max'] = WINDOW_SIZE # макс метрика свертки равна отступу(WINDOW_SIZE), вау!
|
|
|
|
|
|
|
|
def predict(self, dataframe):
|
|
|
|
data = dataframe['value']
|
|
|
|
|
|
|
|
result = self.__predict(data)
|
|
|
|
result.sort()
|
|
|
|
|
|
|
|
if len(self.segments) > 0:
|
|
|
|
result = [segment for segment in result if not utils.is_intersect(segment, self.segments)]
|
|
|
|
return result
|
|
|
|
|
|
|
|
def __predict(self, data):
|
|
|
|
window_size = 24
|
|
|
|
all_max_flatten_data = data.rolling(window=window_size).mean()
|
|
|
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
|
|
|
|
possible_jumps = utils.find_all_jumps(all_max_flatten_data, 50, self.state['confidence'])
|
|
|
|
|
|
|
|
'''
|
|
|
|
for i in utils.exponential_smoothing(data + self.state['confidence'], 0.02):
|
|
|
|
extrema_list.append(i)
|
|
|
|
|
|
|
|
segments = []
|
|
|
|
for i in all_mins:
|
|
|
|
if all_max_flatten_data[i] > extrema_list[i]:
|
|
|
|
segments.append(i - window_size)
|
|
|
|
'''
|
|
|
|
|
|
|
|
return [(x - 1, x + 1) for x in self.__filter_prediction(possible_jumps, all_max_flatten_data)]
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments, all_max_flatten_data):
|
|
|
|
delete_list = []
|
|
|
|
variance_error = int(0.004 * len(all_max_flatten_data))
|
|
|
|
if variance_error > 200:
|
|
|
|
variance_error = 200
|
|
|
|
for i in range(1, len(segments)):
|
|
|
|
if segments[i] < segments[i - 1] + variance_error:
|
|
|
|
delete_list.append(segments[i])
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
# изменить секонд делит лист, сделать для свертки с сигмоидой
|
|
|
|
# !!!!!!!!
|
|
|
|
# написать фильтрацию паттернов-джампов! посмотерть каждый сегмент, обрезать его
|
|
|
|
# отнормировать, сравнить с выбранным патерном.
|
|
|
|
# !!!!!!!!
|
|
|
|
delete_list = []
|
|
|
|
pattern_data = all_max_flatten_data[segments[0] - WINDOW_SIZE : segments[0] + WINDOW_SIZE]
|
|
|
|
for segment in segments:
|
|
|
|
convol_data = all_max_flatten_data[segment - WINDOW_SIZE : segment + WINDOW_SIZE]
|
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
|
|
|
|
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_max'] * 0.9:
|
|
|
|
delete_list.append(segment)
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
return segments
|
|
|
|
|
|
|
|
def alpha_finder(self, data):
|
|
|
|
"""
|
|
|
|
поиск альфы для логистической сигмоиды
|
|
|
|
"""
|
|
|
|
pass
|