Alexey Velikiy
7 years ago
9 changed files with 320 additions and 315 deletions
@ -1,19 +1,23 @@
|
||||
# Imports |
||||
|
||||
You import local files first, than spesific liba and then standart libs. |
||||
So you import from something very scecific to something very common. |
||||
It allows you to pay attention on most important things from beginning. |
||||
|
||||
``` |
||||
|
||||
from data_provider import DataProvider |
||||
from anomaly_model import AnomalyModel |
||||
from pattern_detection_model import PatternDetectionModel |
||||
|
||||
import numpy as np |
||||
|
||||
from scipy.signal import argrelextrema |
||||
|
||||
import pickle |
||||
|
||||
# Line endings |
||||
|
||||
We use CRLS everywhere |
||||
|
||||
# Imports |
||||
|
||||
You import local files first, than spesific liba and then standart libs. |
||||
So you import from something very scecific to something very common. |
||||
It allows you to pay attention on most important things from beginning. |
||||
|
||||
``` |
||||
|
||||
from data_provider import DataProvider |
||||
from anomaly_model import AnomalyModel |
||||
from pattern_detection_model import PatternDetectionModel |
||||
|
||||
import numpy as np |
||||
|
||||
from scipy.signal import argrelextrema |
||||
|
||||
import pickle |
||||
|
||||
``` |
@ -1,37 +1,37 @@
|
||||
import os |
||||
import json |
||||
|
||||
|
||||
PARENT_FOLDER = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) |
||||
DATA_FOLDER = os.path.join(PARENT_FOLDER, 'data') |
||||
CONFIG_FILE = os.path.join(PARENT_FOLDER, 'config.json') |
||||
|
||||
|
||||
config_exists = os.path.isfile(CONFIG_FILE) |
||||
if config_exists: |
||||
with open(CONFIG_FILE) as f: |
||||
config = json.load(f) |
||||
|
||||
|
||||
def get_config_field(field, default_val = None): |
||||
|
||||
if field in os.environ: |
||||
return os.environ[field] |
||||
|
||||
if config_exists and field in config: |
||||
return config[field] |
||||
|
||||
if default_val is not None: |
||||
return default_val |
||||
|
||||
raise Exception('Please configure {}'.format(field)) |
||||
|
||||
|
||||
|
||||
DATASET_FOLDER = os.path.join(DATA_FOLDER, 'datasets') |
||||
ANALYTIC_UNITS_FOLDER = os.path.join(DATA_FOLDER, 'analytic_units') |
||||
MODELS_FOLDER = os.path.join(DATA_FOLDER, 'models') |
||||
METRICS_FOLDER = os.path.join(DATA_FOLDER, 'metrics') |
||||
|
||||
HASTIC_API_KEY = get_config_field('HASTIC_API_KEY') |
||||
ZEROMQ_CONNECTION_STRING = get_config_field('ZEROMQ_CONNECTION_STRING', 'tcp://*:8002') |
||||
import os |
||||
import json |
||||
|
||||
|
||||
PARENT_FOLDER = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) |
||||
DATA_FOLDER = os.path.join(PARENT_FOLDER, 'data') |
||||
CONFIG_FILE = os.path.join(PARENT_FOLDER, 'config.json') |
||||
|
||||
|
||||
config_exists = os.path.isfile(CONFIG_FILE) |
||||
if config_exists: |
||||
with open(CONFIG_FILE) as f: |
||||
config = json.load(f) |
||||
|
||||
|
||||
def get_config_field(field, default_val = None): |
||||
|
||||
if field in os.environ: |
||||
return os.environ[field] |
||||
|
||||
if config_exists and field in config: |
||||
return config[field] |
||||
|
||||
if default_val is not None: |
||||
return default_val |
||||
|
||||
raise Exception('Please configure {}'.format(field)) |
||||
|
||||
|
||||
|
||||
DATASET_FOLDER = os.path.join(DATA_FOLDER, 'datasets') |
||||
ANALYTIC_UNITS_FOLDER = os.path.join(DATA_FOLDER, 'analytic_units') |
||||
MODELS_FOLDER = os.path.join(DATA_FOLDER, 'models') |
||||
METRICS_FOLDER = os.path.join(DATA_FOLDER, 'metrics') |
||||
|
||||
HASTIC_API_KEY = get_config_field('HASTIC_API_KEY') |
||||
ZEROMQ_CONNECTION_STRING = get_config_field('ZEROMQ_CONNECTION_STRING', 'tcp://*:8002') |
||||
|
@ -1,5 +1,5 @@
|
||||
from detectors.general_detector import GeneralDetector |
||||
from detectors.pattern_detection_model import PatternDetectionModel |
||||
from detectors.peaks_detector import PeaksDetector |
||||
from detectors.step_detector import StepDetector |
||||
from detectors.jump_detector import Jumpdetector |
||||
from detectors.general_detector import GeneralDetector |
||||
from detectors.pattern_detection_model import PatternDetectionModel |
||||
from detectors.peaks_detector import PeaksDetector |
||||
from detectors.step_detector import StepDetector |
||||
from detectors.jump_detector import Jumpdetector |
||||
|
@ -1,138 +1,138 @@
|
||||
import numpy as np |
||||
import pickle |
||||
import scipy.signal |
||||
from scipy.fftpack import fft |
||||
from scipy.signal import argrelextrema |
||||
import math |
||||
|
||||
def is_intersect(target_segment, segments): |
||||
for segment in segments: |
||||
start = max(segment['start'], target_segment[0]) |
||||
finish = min(segment['finish'], target_segment[1]) |
||||
if start <= finish: |
||||
return True |
||||
return False |
||||
|
||||
def exponential_smoothing(series, alpha): |
||||
result = [series[0]] |
||||
for n in range(1, len(series)): |
||||
result.append(alpha * series[n] + (1 - alpha) * result[n-1]) |
||||
return result |
||||
|
||||
class Jumpdetector: |
||||
|
||||
def __init__(self, pattern): |
||||
self.pattern = pattern |
||||
self.segments = [] |
||||
self.confidence = 1.5 |
||||
self.convolve_max = 120 |
||||
|
||||
def fit(self, dataframe, segments): |
||||
data = dataframe['value'] |
||||
confidences = [] |
||||
convolve_list = [] |
||||
for segment in segments: |
||||
if segment['labeled']: |
||||
segment_data = data[segment['start'] : segment['finish'] + 1] |
||||
segment_min = min(segment_data) |
||||
segment_max = max(segment_data) |
||||
confidences.append(0.20 * (segment_max - segment_min)) |
||||
flat_segment = segment_data.rolling(window=5).mean() #сглаживаем сегмент |
||||
# в идеале нужно посмотреть гистограмму сегмента и выбрать среднее значение, |
||||
# далее от него брать + -120 |
||||
segment_summ = 0 |
||||
for val in flat_segment: |
||||
segment_summ += val |
||||
segment_mid = segment_summ / len(flat_segment) #посчитать нормально среднее значение/медиану |
||||
for ind in range(1, len(flat_segment) - 1): |
||||
if flat_segment[ind + 1] > segment_mid and flat_segment[ind - 1] < segment_mid: |
||||
flat_mid_index = ind # найти пересечение средней и графика, получить его индекс |
||||
segment_mid_index = flat_mid_index - 5 |
||||
labeled_drop = data[segment_mid_index - 120 : segment_mid_index + 120] |
||||
labeled_min = min(labeled_drop) |
||||
for value in labeled_drop: # обрезаем |
||||
value = value - labeled_min |
||||
labeled_max = max(labeled_drop) |
||||
for value in labeled_drop: # нормируем |
||||
value = value / labeled_max |
||||
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
||||
convolve_list.append(max(convolve)) # сворачиваем паттерн |
||||
# плюс надо впихнуть сюда логистическую сигмоиду и поиск альфы |
||||
|
||||
if len(confidences) > 0: |
||||
self.confidence = min(confidences) |
||||
else: |
||||
self.confidence = 1.5 |
||||
|
||||
if len(convolve_list) > 0: |
||||
self.convolve_max = max(convolve_list) |
||||
else: |
||||
self.convolve_max = 120 # макс метрика свертки равна отступу(120), вау! |
||||
|
||||
def logistic_sigmoid(x1, x2, alpha, height): |
||||
distribution = [] |
||||
for i in range(x, y): |
||||
F = 1 * height / (1 + math.exp(-i * alpha)) |
||||
distribution.append(F) |
||||
return distribution |
||||
|
||||
async def predict(self, dataframe): |
||||
data = dataframe['value'] |
||||
|
||||
result = self.__predict(data) |
||||
result.sort() |
||||
|
||||
if len(self.segments) > 0: |
||||
result = [segment for segment in result if not is_intersect(segment, self.segments)] |
||||
return result |
||||
|
||||
def __predict(self, data): |
||||
window_size = 24 |
||||
all_max_flatten_data = data.rolling(window=window_size).mean() |
||||
extrema_list = [] |
||||
# добавить все пересечения экспоненты со сглаженным графиком |
||||
# |
||||
for i in exponential_smoothing(data + self.confidence, 0.02): |
||||
extrema_list.append(i) |
||||
|
||||
segments = [] |
||||
for i in all_mins: |
||||
if all_max_flatten_data[i] > extrema_list[i]: |
||||
segments.append(i - window_size) |
||||
|
||||
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)] |
||||
|
||||
def __filter_prediction(self, segments, all_max_flatten_data): |
||||
delete_list = [] |
||||
variance_error = int(0.004 * len(all_max_flatten_data)) |
||||
if variance_error > 200: |
||||
variance_error = 200 |
||||
for i in range(1, len(segments)): |
||||
if segments[i] < segments[i - 1] + variance_error: |
||||
delete_list.append(segments[i]) |
||||
for item in delete_list: |
||||
segments.remove(item) |
||||
|
||||
# изменить секонд делит лист, сделать для свертки с сигмоидой |
||||
delete_list = [] |
||||
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120] |
||||
for segment in segments: |
||||
convol_data = all_max_flatten_data[segment - 120 : segment + 120] |
||||
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
||||
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9: |
||||
delete_list.append(segment) |
||||
for item in delete_list: |
||||
segments.remove(item) |
||||
|
||||
return segments |
||||
|
||||
def save(self, model_filename): |
||||
with open(model_filename, 'wb') as file: |
||||
pickle.dump((self.confidence, self.convolve_max), file) |
||||
|
||||
def load(self, model_filename): |
||||
try: |
||||
with open(model_filename, 'rb') as file: |
||||
(self.confidence, self.convolve_max) = pickle.load(file) |
||||
except: |
||||
pass |
||||
import numpy as np |
||||
import pickle |
||||
import scipy.signal |
||||
from scipy.fftpack import fft |
||||
from scipy.signal import argrelextrema |
||||
import math |
||||
|
||||
def is_intersect(target_segment, segments): |
||||
for segment in segments: |
||||
start = max(segment['start'], target_segment[0]) |
||||
finish = min(segment['finish'], target_segment[1]) |
||||
if start <= finish: |
||||
return True |
||||
return False |
||||
|
||||
def exponential_smoothing(series, alpha): |
||||
result = [series[0]] |
||||
for n in range(1, len(series)): |
||||
result.append(alpha * series[n] + (1 - alpha) * result[n-1]) |
||||
return result |
||||
|
||||
class Jumpdetector: |
||||
|
||||
def __init__(self, pattern): |
||||
self.pattern = pattern |
||||
self.segments = [] |
||||
self.confidence = 1.5 |
||||
self.convolve_max = 120 |
||||
|
||||
def fit(self, dataframe, segments): |
||||
data = dataframe['value'] |
||||
confidences = [] |
||||
convolve_list = [] |
||||
for segment in segments: |
||||
if segment['labeled']: |
||||
segment_data = data[segment['start'] : segment['finish'] + 1] |
||||
segment_min = min(segment_data) |
||||
segment_max = max(segment_data) |
||||
confidences.append(0.20 * (segment_max - segment_min)) |
||||
flat_segment = segment_data.rolling(window=5).mean() #сглаживаем сегмент |
||||
# в идеале нужно посмотреть гистограмму сегмента и выбрать среднее значение, |
||||
# далее от него брать + -120 |
||||
segment_summ = 0 |
||||
for val in flat_segment: |
||||
segment_summ += val |
||||
segment_mid = segment_summ / len(flat_segment) #посчитать нормально среднее значение/медиану |
||||
for ind in range(1, len(flat_segment) - 1): |
||||
if flat_segment[ind + 1] > segment_mid and flat_segment[ind - 1] < segment_mid: |
||||
flat_mid_index = ind # найти пересечение средней и графика, получить его индекс |
||||
segment_mid_index = flat_mid_index - 5 |
||||
labeled_drop = data[segment_mid_index - 120 : segment_mid_index + 120] |
||||
labeled_min = min(labeled_drop) |
||||
for value in labeled_drop: # обрезаем |
||||
value = value - labeled_min |
||||
labeled_max = max(labeled_drop) |
||||
for value in labeled_drop: # нормируем |
||||
value = value / labeled_max |
||||
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
||||
convolve_list.append(max(convolve)) # сворачиваем паттерн |
||||
# плюс надо впихнуть сюда логистическую сигмоиду и поиск альфы |
||||
|
||||
if len(confidences) > 0: |
||||
self.confidence = min(confidences) |
||||
else: |
||||
self.confidence = 1.5 |
||||
|
||||
if len(convolve_list) > 0: |
||||
self.convolve_max = max(convolve_list) |
||||
else: |
||||
self.convolve_max = 120 # макс метрика свертки равна отступу(120), вау! |
||||
|
||||
def logistic_sigmoid(x1, x2, alpha, height): |
||||
distribution = [] |
||||
for i in range(x, y): |
||||
F = 1 * height / (1 + math.exp(-i * alpha)) |
||||
distribution.append(F) |
||||
return distribution |
||||
|
||||
async def predict(self, dataframe): |
||||
data = dataframe['value'] |
||||
|
||||
result = self.__predict(data) |
||||
result.sort() |
||||
|
||||
if len(self.segments) > 0: |
||||
result = [segment for segment in result if not is_intersect(segment, self.segments)] |
||||
return result |
||||
|
||||
def __predict(self, data): |
||||
window_size = 24 |
||||
all_max_flatten_data = data.rolling(window=window_size).mean() |
||||
extrema_list = [] |
||||
# добавить все пересечения экспоненты со сглаженным графиком |
||||
# |
||||
for i in exponential_smoothing(data + self.confidence, 0.02): |
||||
extrema_list.append(i) |
||||
|
||||
segments = [] |
||||
for i in all_mins: |
||||
if all_max_flatten_data[i] > extrema_list[i]: |
||||
segments.append(i - window_size) |
||||
|
||||
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)] |
||||
|
||||
def __filter_prediction(self, segments, all_max_flatten_data): |
||||
delete_list = [] |
||||
variance_error = int(0.004 * len(all_max_flatten_data)) |
||||
if variance_error > 200: |
||||
variance_error = 200 |
||||
for i in range(1, len(segments)): |
||||
if segments[i] < segments[i - 1] + variance_error: |
||||
delete_list.append(segments[i]) |
||||
for item in delete_list: |
||||
segments.remove(item) |
||||
|
||||
# изменить секонд делит лист, сделать для свертки с сигмоидой |
||||
delete_list = [] |
||||
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120] |
||||
for segment in segments: |
||||
convol_data = all_max_flatten_data[segment - 120 : segment + 120] |
||||
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
||||
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9: |
||||
delete_list.append(segment) |
||||
for item in delete_list: |
||||
segments.remove(item) |
||||
|
||||
return segments |
||||
|
||||
def save(self, model_filename): |
||||
with open(model_filename, 'wb') as file: |
||||
pickle.dump((self.confidence, self.convolve_max), file) |
||||
|
||||
def load(self, model_filename): |
||||
try: |
||||
with open(model_filename, 'rb') as file: |
||||
(self.confidence, self.convolve_max) = pickle.load(file) |
||||
except: |
||||
pass |
||||
|
@ -1,64 +1,64 @@
|
||||
import config |
||||
import json |
||||
import logging |
||||
import sys |
||||
import asyncio |
||||
|
||||
import services |
||||
from analytic_unit_worker import AnalyticUnitWorker |
||||
|
||||
|
||||
|
||||
root = logging.getLogger() |
||||
logger = logging.getLogger('SERVER') |
||||
|
||||
worker = None |
||||
server_service = None |
||||
data_service = None |
||||
|
||||
root.setLevel(logging.DEBUG) |
||||
|
||||
ch = logging.StreamHandler(sys.stdout) |
||||
ch.setLevel(logging.DEBUG) |
||||
formatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") |
||||
ch.setFormatter(formatter) |
||||
root.addHandler(ch) |
||||
|
||||
|
||||
async def handle_task(text): |
||||
try: |
||||
task = json.loads(text) |
||||
logger.info("Command is OK") |
||||
|
||||
await server_service.send_message(json.dumps({ |
||||
'_taskId': task['_taskId'], |
||||
'task': task['type'], |
||||
'analyticUnitId': task['analyticUnitId'], |
||||
'status': "in progress" |
||||
})) |
||||
|
||||
res = await worker.do_task(task) |
||||
res['_taskId'] = task['_taskId'] |
||||
await server_service.send_message(json.dumps(res)) |
||||
|
||||
except Exception as e: |
||||
logger.error("Exception: '%s'" % str(e)) |
||||
|
||||
def init_services(): |
||||
logger.info("Starting services...") |
||||
logger.info("Server...") |
||||
server_service = services.ServerService(handle_task) |
||||
logger.info("Ok") |
||||
logger.info("Data service...") |
||||
data_service = services.DataService(server_service) |
||||
logger.info("Ok") |
||||
|
||||
return server_service, data_service |
||||
|
||||
if __name__ == "__main__": |
||||
loop = asyncio.get_event_loop() |
||||
logger.info("Starting worker...") |
||||
worker = AnalyticUnitWorker() |
||||
logger.info("Ok") |
||||
server_service, data_service = init_services() |
||||
loop.run_until_complete(server_service.handle_loop()) |
||||
import config |
||||
import json |
||||
import logging |
||||
import sys |
||||
import asyncio |
||||
|
||||
import services |
||||
from analytic_unit_worker import AnalyticUnitWorker |
||||
|
||||
|
||||
|
||||
root = logging.getLogger() |
||||
logger = logging.getLogger('SERVER') |
||||
|
||||
worker = None |
||||
server_service = None |
||||
data_service = None |
||||
|
||||
root.setLevel(logging.DEBUG) |
||||
|
||||
ch = logging.StreamHandler(sys.stdout) |
||||
ch.setLevel(logging.DEBUG) |
||||
formatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") |
||||
ch.setFormatter(formatter) |
||||
root.addHandler(ch) |
||||
|
||||
|
||||
async def handle_task(text): |
||||
try: |
||||
task = json.loads(text) |
||||
logger.info("Command is OK") |
||||
|
||||
await server_service.send_message(json.dumps({ |
||||
'_taskId': task['_taskId'], |
||||
'task': task['type'], |
||||
'analyticUnitId': task['analyticUnitId'], |
||||
'status': "in progress" |
||||
})) |
||||
|
||||
res = await worker.do_task(task) |
||||
res['_taskId'] = task['_taskId'] |
||||
await server_service.send_message(json.dumps(res)) |
||||
|
||||
except Exception as e: |
||||
logger.error("Exception: '%s'" % str(e)) |
||||
|
||||
def init_services(): |
||||
logger.info("Starting services...") |
||||
logger.info("Server...") |
||||
server_service = services.ServerService(handle_task) |
||||
logger.info("Ok") |
||||
logger.info("Data service...") |
||||
data_service = services.DataService(server_service) |
||||
logger.info("Ok") |
||||
|
||||
return server_service, data_service |
||||
|
||||
if __name__ == "__main__": |
||||
loop = asyncio.get_event_loop() |
||||
logger.info("Starting worker...") |
||||
worker = AnalyticUnitWorker() |
||||
logger.info("Ok") |
||||
server_service, data_service = init_services() |
||||
loop.run_until_complete(server_service.handle_loop()) |
||||
|
@ -1,2 +1,2 @@
|
||||
from services.server_service import ServerService |
||||
from services.data_service import DataService |
||||
from services.server_service import ServerService |
||||
from services.data_service import DataService |
||||
|
@ -1,9 +1,9 @@
|
||||
class DataService: |
||||
def __init__(self, server_service): |
||||
self.server_service = server_service |
||||
|
||||
async def safe_file(filename, content): |
||||
pass |
||||
|
||||
async def load_file(filename, content): |
||||
class DataService: |
||||
def __init__(self, server_service): |
||||
self.server_service = server_service |
||||
|
||||
async def safe_file(filename, content): |
||||
pass |
||||
|
||||
async def load_file(filename, content): |
||||
pass |
@ -1,42 +1,42 @@
|
||||
import config |
||||
|
||||
import zmq |
||||
import zmq.asyncio |
||||
import logging |
||||
|
||||
import asyncio |
||||
|
||||
logger = logging.getLogger('SERVER_SERVICE') |
||||
|
||||
|
||||
class ServerService: |
||||
|
||||
def __init__(self, on_message_handler): |
||||
self.on_message_handler = on_message_handler |
||||
|
||||
logger.info("Binding to %s ..." % config.ZEROMQ_CONNECTION_STRING) |
||||
self.context = zmq.asyncio.Context() |
||||
self.socket = self.context.socket(zmq.PAIR) |
||||
self.socket.bind(config.ZEROMQ_CONNECTION_STRING) |
||||
|
||||
async def handle_loop(self): |
||||
while True: |
||||
received_bytes = await self.socket.recv() |
||||
text = received_bytes.decode('utf-8') |
||||
|
||||
if text == 'ping': |
||||
asyncio.ensure_future(self.__handle_ping()) |
||||
else: |
||||
asyncio.ensure_future(self.__handle_message(text)) |
||||
|
||||
async def send_message(self, string): |
||||
await self.socket.send_string(string) |
||||
|
||||
async def __handle_ping(self): |
||||
await self.socket.send(b'pong') |
||||
|
||||
async def __handle_message(self, text): |
||||
try: |
||||
asyncio.ensure_future(self.on_message_handler(text)) |
||||
except Exception as e: |
||||
logger.error("Exception: '%s'" % str(e)) |
||||
import config |
||||
|
||||
import zmq |
||||
import zmq.asyncio |
||||
import logging |
||||
|
||||
import asyncio |
||||
|
||||
logger = logging.getLogger('SERVER_SERVICE') |
||||
|
||||
|
||||
class ServerService: |
||||
|
||||
def __init__(self, on_message_handler): |
||||
self.on_message_handler = on_message_handler |
||||
|
||||
logger.info("Binding to %s ..." % config.ZEROMQ_CONNECTION_STRING) |
||||
self.context = zmq.asyncio.Context() |
||||
self.socket = self.context.socket(zmq.PAIR) |
||||
self.socket.bind(config.ZEROMQ_CONNECTION_STRING) |
||||
|
||||
async def handle_loop(self): |
||||
while True: |
||||
received_bytes = await self.socket.recv() |
||||
text = received_bytes.decode('utf-8') |
||||
|
||||
if text == 'ping': |
||||
asyncio.ensure_future(self.__handle_ping()) |
||||
else: |
||||
asyncio.ensure_future(self.__handle_message(text)) |
||||
|
||||
async def send_message(self, string): |
||||
await self.socket.send_string(string) |
||||
|
||||
async def __handle_ping(self): |
||||
await self.socket.send(b'pong') |
||||
|
||||
async def __handle_message(self, text): |
||||
try: |
||||
asyncio.ensure_future(self.on_message_handler(text)) |
||||
except Exception as e: |
||||
logger.error("Exception: '%s'" % str(e)) |
||||
|
Loading…
Reference in new issue