|
|
|
import utils
|
|
|
|
import numpy as np
|
|
|
|
import pickle
|
|
|
|
import scipy.signal
|
|
|
|
from scipy.fftpack import fft
|
|
|
|
from scipy.signal import argrelextrema
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
class JumpDetector:
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
self.segments = []
|
|
|
|
self.confidence = 1.5
|
|
|
|
self.convolve_max = 120
|
|
|
|
|
|
|
|
async def fit(self, dataframe, segments):
|
|
|
|
#self.alpha_finder()
|
|
|
|
data = dataframe['value']
|
|
|
|
confidences = []
|
|
|
|
convolve_list = []
|
|
|
|
for segment in segments:
|
|
|
|
if segment['labeled']:
|
|
|
|
segment_data = data[segment['start'] : segment['finish'] + 1]
|
|
|
|
segment_min = min(segment_data)
|
|
|
|
segment_max = max(segment_data)
|
|
|
|
confidences.append(0.20 * (segment_max - segment_min))
|
|
|
|
flat_segment = segment_data.rolling(window=4).mean() #сглаживаем сегмент
|
|
|
|
kde_segment = flat_data.dropna().plot.kde() # distribution density
|
|
|
|
ax = flat_data.dropna().plot.kde()
|
|
|
|
ax_list = ax.get_lines()[0].get_xydata()
|
|
|
|
mids = argrelextrema(np.array(ax_list), np.less)[0]
|
|
|
|
maxs = argrelextrema(np.array(ax_list), np.greater)[0]
|
|
|
|
min_peak = maxs[0]
|
|
|
|
max_peak = maxs[1]
|
|
|
|
min_line = ax_list[min_peak, 0]
|
|
|
|
max_line = ax_list[max_peak, 0]
|
|
|
|
sigm_heidht = max_line - min_line
|
|
|
|
pat_sigm = utils.logistic_sigmoid(-120, 120, 1, sigm_heidht)
|
|
|
|
for i in range(0, len(pat_sigm)):
|
|
|
|
pat_sigm[i] = pat_sigm[i] + min_line
|
|
|
|
cen_ind = utils.intersection_segment(flat_segment, mids[0])
|
|
|
|
c = []
|
|
|
|
for i in range(len(cen_ind)):
|
|
|
|
x = cen_ind[i]
|
|
|
|
cx = scipy.signal.fftconvolve(pat_sigm, flat_data[x-120:x+120])
|
|
|
|
c.append(cx[240])
|
|
|
|
|
|
|
|
# в идеале нужно посмотреть гистограмму сегмента и выбрать среднее значение,
|
|
|
|
# далее от него брать + -120
|
|
|
|
segment_summ = 0
|
|
|
|
for val in flat_segment:
|
|
|
|
segment_summ += val
|
|
|
|
segment_mid = segment_summ / len(flat_segment) #посчитать нормально среднее значение/медиану
|
|
|
|
for ind in range(1, len(flat_segment) - 1):
|
|
|
|
if flat_segment[ind + 1] > segment_mid and flat_segment[ind - 1] < segment_mid:
|
|
|
|
flat_mid_index = ind # найти пересечение средней и графика, получить его индекс
|
|
|
|
segment_mid_index = flat_mid_index - 5
|
|
|
|
labeled_drop = data[segment_mid_index - 120 : segment_mid_index + 120]
|
|
|
|
labeled_min = min(labeled_drop)
|
|
|
|
for value in labeled_drop: # обрезаем
|
|
|
|
value = value - labeled_min
|
|
|
|
labeled_max = max(labeled_drop)
|
|
|
|
for value in labeled_drop: # нормируем
|
|
|
|
value = value / labeled_max
|
|
|
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
|
|
|
|
convolve_list.append(max(convolve)) # сворачиваем паттерн
|
|
|
|
# плюс надо впихнуть сюда логистическую сигмоиду и поиск альфы
|
|
|
|
|
|
|
|
if len(confidences) > 0:
|
|
|
|
self.confidence = min(confidences)
|
|
|
|
else:
|
|
|
|
self.confidence = 1.5
|
|
|
|
|
|
|
|
if len(convolve_list) > 0:
|
|
|
|
self.convolve_max = max(convolve_list)
|
|
|
|
else:
|
|
|
|
self.convolve_max = 120 # макс метрика свертки равна отступу(120), вау!
|
|
|
|
|
|
|
|
async def predict(self, dataframe):
|
|
|
|
data = dataframe['value']
|
|
|
|
|
|
|
|
result = await self.__predict(data)
|
|
|
|
result.sort()
|
|
|
|
|
|
|
|
if len(self.segments) > 0:
|
|
|
|
result = [segment for segment in result if not utils.is_intersect(segment, self.segments)]
|
|
|
|
return result
|
|
|
|
|
|
|
|
async def __predict(self, data):
|
|
|
|
window_size = 24
|
|
|
|
all_max_flatten_data = data.rolling(window=window_size).mean()
|
|
|
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
|
|
|
|
extrema_list = []
|
|
|
|
# добавить все пересечения экспоненты со сглаженным графиком
|
|
|
|
|
|
|
|
for i in utils.exponential_smoothing(data + self.confidence, 0.02):
|
|
|
|
extrema_list.append(i)
|
|
|
|
|
|
|
|
segments = []
|
|
|
|
for i in all_mins:
|
|
|
|
if all_max_flatten_data[i] > extrema_list[i]:
|
|
|
|
segments.append(i - window_size)
|
|
|
|
|
|
|
|
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)]
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments, all_max_flatten_data):
|
|
|
|
delete_list = []
|
|
|
|
variance_error = int(0.004 * len(all_max_flatten_data))
|
|
|
|
if variance_error > 200:
|
|
|
|
variance_error = 200
|
|
|
|
for i in range(1, len(segments)):
|
|
|
|
if segments[i] < segments[i - 1] + variance_error:
|
|
|
|
delete_list.append(segments[i])
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
# изменить секонд делит лист, сделать для свертки с сигмоидой
|
|
|
|
delete_list = []
|
|
|
|
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120]
|
|
|
|
for segment in segments:
|
|
|
|
convol_data = all_max_flatten_data[segment - 120 : segment + 120]
|
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
|
|
|
|
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9:
|
|
|
|
delete_list.append(segment)
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
return segments
|
|
|
|
|
|
|
|
def save(self, model_filename):
|
|
|
|
with open(model_filename, 'wb') as file:
|
|
|
|
pickle.dump((self.confidence, self.convolve_max), file)
|
|
|
|
|
|
|
|
def load(self, model_filename):
|
|
|
|
try:
|
|
|
|
with open(model_filename, 'rb') as file:
|
|
|
|
(self.confidence, self.convolve_max) = pickle.load(file)
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
def alpha_finder(self, data):
|
|
|
|
"""
|
|
|
|
поиск альфы для логистической сигмоиды
|
|
|
|
"""
|
|
|
|
pass
|