|
|
|
import models
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import config
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
from detectors import Detector
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger('PATTERN_DETECTOR')
|
|
|
|
|
|
|
|
|
|
|
|
def resolve_model_by_pattern(pattern: str) -> models.Model:
|
|
|
|
if pattern == 'PEAK':
|
|
|
|
return models.PeaksModel()
|
|
|
|
if pattern == 'DROP':
|
|
|
|
return models.StepModel()
|
|
|
|
if pattern == 'JUMP':
|
|
|
|
return models.JumpModel()
|
|
|
|
if pattern == 'CUSTOM':
|
|
|
|
return models.CustomModel()
|
|
|
|
raise ValueError('Unknown pattern "%s"' % pattern)
|
|
|
|
|
|
|
|
|
|
|
|
class PatternDetector(Detector):
|
|
|
|
|
|
|
|
def __init__(self, pattern_type):
|
|
|
|
self.pattern_type = pattern_type
|
|
|
|
self.model = resolve_model_by_pattern(self.pattern_type)
|
|
|
|
window_size = 100
|
|
|
|
|
|
|
|
async def train(self, dataframe: pd.DataFrame, segments: list, cache: dict):
|
|
|
|
# TODO: pass only part of dataframe that has segments
|
|
|
|
self.model.fit(dataframe, segments)
|
|
|
|
# TODO: save model after fit
|
|
|
|
return cache
|
|
|
|
|
|
|
|
async def predict(self, dataframe: pd.DataFrame, cache: dict):
|
|
|
|
predicted_indexes = await self.model.predict(dataframe)
|
|
|
|
|
|
|
|
segments = []
|
|
|
|
# for time_value in predicted_times:
|
|
|
|
# ts1 = int(time_value[0].timestamp() * 1000)
|
|
|
|
# ts2 = int(time_value[1].timestamp() * 1000)
|
|
|
|
# segments.append({
|
|
|
|
# 'start': min(ts1, ts2),
|
|
|
|
# 'finish': max(ts1, ts2)
|
|
|
|
# })
|
|
|
|
|
|
|
|
last_dataframe_time = dataframe.iloc[-1]['timestamp']
|
|
|
|
last_prediction_time = int(last_dataframe_time.timestamp() * 1000)
|
|
|
|
return {
|
|
|
|
'cache': cache,
|
|
|
|
'segments': segments,
|
|
|
|
'last_prediction_time': last_prediction_time
|
|
|
|
}
|