|
|
|
import models
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import config
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
from detectors import Detector
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger('PATTERN_DETECTOR')
|
|
|
|
|
|
|
|
|
|
|
|
def resolve_model_by_pattern(pattern: str) -> models.Model:
|
|
|
|
if pattern == 'PEAK':
|
|
|
|
return models.PeakModel()
|
|
|
|
if pattern == 'REVERSE_PEAK':
|
|
|
|
return models.ReversePeakModel()
|
|
|
|
if pattern == 'DROP':
|
|
|
|
return models.DropModel()
|
|
|
|
if pattern == 'JUMP':
|
|
|
|
return models.JumpModel()
|
|
|
|
if pattern == 'CUSTOM':
|
|
|
|
return models.CustomModel()
|
|
|
|
raise ValueError('Unknown pattern "%s"' % pattern)
|
|
|
|
|
|
|
|
|
|
|
|
class PatternDetector(Detector):
|
|
|
|
|
|
|
|
def __init__(self, pattern_type):
|
|
|
|
self.pattern_type = pattern_type
|
|
|
|
self.model = resolve_model_by_pattern(self.pattern_type)
|
|
|
|
window_size = 100
|
|
|
|
|
|
|
|
async def train(self, dataframe: pd.DataFrame, segments: list, cache: Optional[models.AnalyticUnitCache]) -> models.AnalyticUnitCache:
|
|
|
|
# TODO: pass only part of dataframe that has segments
|
|
|
|
new_cache = self.model.fit(dataframe, segments, cache)
|
|
|
|
return {
|
|
|
|
'cache': new_cache
|
|
|
|
}
|
|
|
|
|
|
|
|
async def predict(self, dataframe: pd.DataFrame, cache: Optional[models.AnalyticUnitCache]) -> dict:
|
|
|
|
# TODO: split and sleep (https://github.com/hastic/hastic-server/pull/124#discussion_r214085643)
|
|
|
|
predicted = self.model.predict(dataframe, cache)
|
|
|
|
|
|
|
|
segments = [{ 'from': segment[0], 'to': segment[1] } for segment in predicted['segments']]
|
|
|
|
newCache = predicted['cache']
|
|
|
|
|
|
|
|
last_dataframe_time = dataframe.iloc[-1]['timestamp']
|
|
|
|
last_prediction_time = last_dataframe_time.value
|
|
|
|
return {
|
|
|
|
'cache': newCache,
|
|
|
|
'segments': segments,
|
|
|
|
'lastPredictionTime': last_prediction_time
|
|
|
|
}
|