Coin de Gamma
6 years ago
4 changed files with 38 additions and 230 deletions
@ -0,0 +1,28 @@
|
||||
import { Metric } from '../models/metric_model'; |
||||
|
||||
import { HASTIC_API_KEY } from '../config'; |
||||
|
||||
import axios from 'axios'; |
||||
|
||||
|
||||
export type Timestamp = number; |
||||
/** |
||||
* @param metric to query to Grafana |
||||
* @returns [time, value][] array |
||||
*/ |
||||
export async function queryByMetric(metric: Metric): Promise<[number, number][]> { |
||||
var params = {} + ''; |
||||
let headers = { 'Authorization': 'Bearer ' + HASTIC_API_KEY }; |
||||
let url = metric.datasource['origin'] + '/' + |
||||
metric.datasource['url'] + '?' + |
||||
encodeURIComponent(params); |
||||
var res = await axios.get(url, { headers }); |
||||
let results = res.data['results']; |
||||
if(results === undefined) { |
||||
throw new Error('reuslts field is undefined in response'); |
||||
} |
||||
if(results.series === undefined) { |
||||
return []; |
||||
} |
||||
return res['series'][0]; |
||||
} |
@ -1,229 +0,0 @@
|
||||
// import pandas as pd
|
||||
// import os, re
|
||||
// import numpy as np
|
||||
// from urllib.parse import urlencode, urlparse
|
||||
// import urllib.request
|
||||
// import json
|
||||
// from time import time
|
||||
// from config import HASTIC_API_KEY
|
||||
|
||||
|
||||
// MS_IN_WEEK = 604800000
|
||||
|
||||
// class GrafanaDataProvider:
|
||||
// chunk_size = 50000
|
||||
|
||||
// def __init__(self, datasource, target, data_filename):
|
||||
// self.datasource = datasource
|
||||
// self.target = target
|
||||
// self.data_filename = data_filename
|
||||
// self.last_time = None
|
||||
// self.total_size = 0
|
||||
// self.last_chunk_index = 0
|
||||
// self.chunk_last_times = {}
|
||||
// self.__init_chunks()
|
||||
// self.synchronize()
|
||||
|
||||
// def get_dataframe(self, after_time=None):
|
||||
// result = pd.DataFrame()
|
||||
// for chunk_index, last_chunk_time in self.chunk_last_times.items():
|
||||
// if after_time is None or after_time <= last_chunk_time:
|
||||
// chunk = self.__load_chunk(chunk_index)
|
||||
// if after_time is not None:
|
||||
// chunk = chunk[chunk['timestamp'] >= after_time]
|
||||
// result = pd.concat([result, chunk])
|
||||
// return result
|
||||
|
||||
// def get_upper_bound(self, after_time):
|
||||
// for chunk_index, last_chunk_time in self.chunk_last_times.items():
|
||||
// if after_time < last_chunk_time:
|
||||
// chunk = self.__load_chunk(chunk_index)
|
||||
// chunk = chunk[chunk['timestamp'] >= after_time]
|
||||
// return chunk.index[0]
|
||||
// return self.size()
|
||||
|
||||
// def size(self):
|
||||
// return self.total_size
|
||||
|
||||
// def get_data_range(self, start_index, stop_index=None):
|
||||
// return self.__get_data(start_index, stop_index)
|
||||
|
||||
// def transform_anomalies(self, anomalies):
|
||||
// result = []
|
||||
// if len(anomalies) == 0:
|
||||
// return result
|
||||
// dataframe = self.get_dataframe(None)
|
||||
// for anomaly in anomalies:
|
||||
// start_time = pd.to_datetime(anomaly['start'] - 1, unit='ms')
|
||||
// finish_time = pd.to_datetime(anomaly['finish'] + 1, unit='ms')
|
||||
// current_index = (dataframe['timestamp'] >= start_time) & (dataframe['timestamp'] <= finish_time)
|
||||
// anomaly_frame = dataframe[current_index]
|
||||
// if anomaly_frame.empty:
|
||||
// continue
|
||||
|
||||
// cur_anomaly = {
|
||||
// 'start': anomaly_frame.index[0],
|
||||
// 'finish': anomaly_frame.index[len(anomaly_frame) - 1],
|
||||
// 'labeled': anomaly['labeled']
|
||||
// }
|
||||
// result.append(cur_anomaly)
|
||||
// return result
|
||||
|
||||
// def inverse_transform_indexes(self, indexes):
|
||||
// if len(indexes) == 0:
|
||||
// return []
|
||||
// dataframe = self.get_data_range(indexes[0][0], indexes[-1][1] + 1)
|
||||
|
||||
// return [(dataframe['timestamp'][i1], dataframe['timestamp'][i2]) for (i1, i2) in indexes]
|
||||
|
||||
// def synchronize(self):
|
||||
// append_dataframe = self.load_from_db(self.last_time)
|
||||
// self.__append_data(append_dataframe)
|
||||
|
||||
// def custom_query(self, after_time, before_time = None):
|
||||
// if self.datasource['type'] == 'influxdb':
|
||||
// query = self.datasource['params']['q']
|
||||
// if after_time is not None:
|
||||
// if before_time is not None:
|
||||
// timeFilter = 'time >= %s AND time <= %s' % (after_time, before_time)
|
||||
// else:
|
||||
// timeFilter = 'time >= "%s"' % (str(after_time))
|
||||
// else:
|
||||
// timeFilter = 'time > 0ms'
|
||||
// query = re.sub(r'(?:time >.+?)(GROUP.+)*$', timeFilter + r' \1', query)
|
||||
// return query
|
||||
// else:
|
||||
// raise 'Datasource type ' + self.datasource['type'] + ' is not supported yet'
|
||||
|
||||
// def load_from_db(self, after_time=None):
|
||||
// result = self.__load_data_chunks(after_time)
|
||||
// if result == None or len(result['values']) == 0:
|
||||
// dataframe = pd.DataFrame([])
|
||||
// else:
|
||||
// dataframe = pd.DataFrame(result['values'], columns = result['columns'])
|
||||
// cols = dataframe.columns.tolist()
|
||||
// cols.remove('time')
|
||||
// cols = ['time'] + cols
|
||||
// dataframe = dataframe[cols]
|
||||
// dataframe['time'] = pd.to_datetime(dataframe['time'], unit='ms')
|
||||
// dataframe = dataframe.dropna(axis=0, how='any')
|
||||
|
||||
// return dataframe
|
||||
|
||||
// def __load_data_chunks(self, after_time = None):
|
||||
// params = self.datasource['params']
|
||||
|
||||
// if after_time == None:
|
||||
// res = {
|
||||
// 'columns': [],
|
||||
// 'values': []
|
||||
// }
|
||||
|
||||
// after_time = int(time() * 1000 - MS_IN_WEEK)
|
||||
// before_time = int(time() * 1000)
|
||||
// while True:
|
||||
// params['q'] = self.custom_query(str(after_time) + 'ms', str(before_time) + 'ms')
|
||||
// serie = self.__query_grafana(params)
|
||||
|
||||
// if serie != None:
|
||||
// res['columns'] = serie['columns']
|
||||
// res['values'] += serie['values']
|
||||
|
||||
// after_time -= MS_IN_WEEK
|
||||
// before_time -= MS_IN_WEEK
|
||||
// else:
|
||||
// return res
|
||||
// else:
|
||||
// params['q'] = self.custom_query(str(after_time))
|
||||
|
||||
// return self.__query_grafana(params)
|
||||
|
||||
// def __query_grafana(self, params):
|
||||
|
||||
// headers = { 'Authorization': 'Bearer ' + HASTIC_API_KEY }
|
||||
// url = self.datasource['origin'] + '/' + self.datasource['url'] + '?' + urlencode(params)
|
||||
|
||||
// req = urllib.request.Request(url, headers=headers)
|
||||
// with urllib.request.urlopen(req) as resp:
|
||||
// res = json.loads(resp.read().decode('utf-8'))['results'][0]
|
||||
// if 'series' in res:
|
||||
// return res['series'][0]
|
||||
// else:
|
||||
// return None
|
||||
|
||||
// def __init_chunks(self):
|
||||
// chunk_index = 0
|
||||
// self.last_chunk_index = 0
|
||||
// while True:
|
||||
// filename = self.data_filename
|
||||
// if chunk_index > 0:
|
||||
// filename += "." + str(chunk_index)
|
||||
// if os.path.exists(filename):
|
||||
// self.last_chunk_index = chunk_index
|
||||
// chunk = self.__load_chunk(chunk_index)
|
||||
// chunk_last_time = chunk.iloc[len(chunk) - 1]['timestamp']
|
||||
// self.chunk_last_times[chunk_index] = chunk_last_time
|
||||
// self.last_time = chunk_last_time
|
||||
// else:
|
||||
// break
|
||||
// chunk_index += 1
|
||||
// self.total_size = self.last_chunk_index * self.chunk_size
|
||||
// last_chunk = self.__load_chunk(self.last_chunk_index)
|
||||
// self.total_size += len(last_chunk)
|
||||
|
||||
// def __load_chunk(self, index):
|
||||
// filename = self.data_filename
|
||||
// if index > 0:
|
||||
// filename += "." + str(index)
|
||||
|
||||
// if os.path.exists(filename):
|
||||
// chunk = pd.read_csv(filename, parse_dates=[0])
|
||||
// frame_index = np.arange(index * self.chunk_size, index * self.chunk_size + len(chunk))
|
||||
// chunk = chunk.set_index(frame_index)
|
||||
// return chunk.rename(columns={chunk.columns[0]: "timestamp", chunk.columns[1]: "value"})
|
||||
// return pd.DataFrame()
|
||||
|
||||
// def __save_chunk(self, index, dataframe):
|
||||
// filename = self.data_filename
|
||||
// if index > 0:
|
||||
// filename += "." + str(index)
|
||||
|
||||
// chunk_last_time = dataframe.iloc[len(dataframe) - 1]['time']
|
||||
// self.chunk_last_times[index] = chunk_last_time
|
||||
|
||||
// if os.path.exists(filename):
|
||||
// dataframe.to_csv(filename, mode='a', index=False, header=False)
|
||||
// else:
|
||||
// dataframe.to_csv(filename, mode='w', index=False, header=True)
|
||||
|
||||
// def __append_data(self, dataframe):
|
||||
// while len(dataframe) > 0:
|
||||
// chunk = self.__load_chunk(self.last_chunk_index)
|
||||
// rows_count = min(self.chunk_size - len(chunk), len(dataframe))
|
||||
|
||||
// rows = dataframe.iloc[0:rows_count]
|
||||
|
||||
// if len(rows) > 0:
|
||||
// self.__save_chunk(self.last_chunk_index, rows)
|
||||
// self.total_size += rows_count
|
||||
|
||||
// self.last_time = rows.iloc[-1]['time']
|
||||
// dataframe = dataframe[rows_count:]
|
||||
|
||||
// if len(dataframe) > 0:
|
||||
// self.last_chunk_index += 1
|
||||
|
||||
// def __get_data(self, start_index, stop_index):
|
||||
// result = pd.DataFrame()
|
||||
// start_chunk = start_index // self.chunk_size
|
||||
// finish_chunk = self.last_chunk_index
|
||||
// if stop_index is not None:
|
||||
// finish_chunk = stop_index // self.chunk_size
|
||||
// for chunk_num in range(start_chunk, finish_chunk + 1):
|
||||
// chunk = self.__load_chunk(chunk_num)
|
||||
// if stop_index is not None and chunk_num == finish_chunk:
|
||||
// chunk = chunk[:stop_index % self.chunk_size]
|
||||
// if chunk_num == start_chunk:
|
||||
// chunk = chunk[start_index % self.chunk_size:]
|
||||
// result = pd.concat([result, chunk])
|
||||
// return result
|
Loading…
Reference in new issue