|
|
|
import utils
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from typing import Optional
|
|
|
|
import pandas as pd
|
|
|
|
import math
|
|
|
|
|
|
|
|
AnalyticUnitCache = dict
|
|
|
|
|
|
|
|
class Model(ABC):
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> None:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def do_predict(self, dataframe: pd.DataFrame) -> list:
|
|
|
|
pass
|
|
|
|
|
|
|
|
def fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> AnalyticUnitCache:
|
|
|
|
if type(cache) is AnalyticUnitCache:
|
|
|
|
self.state = cache
|
|
|
|
|
|
|
|
self.segments = segments
|
|
|
|
segment_length_list = []
|
|
|
|
for segment in self.segments:
|
|
|
|
if segment['labeled']:
|
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
|
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
|
|
|
|
|
|
|
|
segment_length = abs(segment_to_index - segment_from_index)
|
|
|
|
segment_length_list.append(segment_length)
|
|
|
|
self.state['WINDOW_SIZE'] = math.ceil(max(segment_length_list) / 2)
|
|
|
|
self.do_fit(dataframe, segments)
|
|
|
|
return self.state
|
|
|
|
|
|
|
|
def predict(self, dataframe: pd.DataFrame, cache: Optional[AnalyticUnitCache]) -> dict:
|
|
|
|
if type(cache) is AnalyticUnitCache:
|
|
|
|
self.state = cache
|
|
|
|
|
|
|
|
result = self.do_predict(dataframe)
|
|
|
|
# TODO: convert from ns to ms more proper way (not dividing by 10^6)
|
|
|
|
segments = [(
|
|
|
|
dataframe['timestamp'][x - 1].value / 1000000,
|
|
|
|
dataframe['timestamp'][x + 1].value / 1000000
|
|
|
|
) for x in result]
|
|
|
|
|
|
|
|
return {
|
|
|
|
'segments': segments,
|
|
|
|
'cache': self.state
|
|
|
|
}
|