Browse Source

analytics: detector class + more types + remove Model.(save/load)

pull/1/head
Coin de Gamma 7 years ago
parent
commit
7e5381f464
  1. 73
      analytics/analytic_unit_worker.py
  2. 2
      analytics/detectors/__init__.py
  3. 13
      analytics/detectors/detector.py
  4. 19
      analytics/models/model.py

73
analytics/analytic_unit_worker.py

@ -7,84 +7,65 @@ import traceback
import time
logger = logging.getLogger('WORKER')
logger = logging.getLogger('AnalyticUnitWorker')
class AnalyticUnitWorker(object):
detectors_cache = {}
# TODO: get task as an object built from json
class AnalyticUnitWorker:
def get_detector(self, analytic_unit_id, pattern_type):
if analytic_unit_id not in self.detectors_cache:
if pattern_type == 'GENERAL':
detector = detectors.GeneralDetector(analytic_unit_id)
else:
detector = detectors.PatternDetector(analytic_unit_id, pattern_type)
self.detectors_cache[analytic_unit_id] = detector
return self.detectors_cache[analytic_unit_id]
def __init__(self, detector: detectors.Detector):
pass
async def do_task(self, task):
try:
type = task['type']
analytic_unit_id = task['analyticUnitId']
payload = task['payload']
if type == "PREDICT":
result = await self.do_predict(analytic_unit_id, payload)
result_payload = await self.do_predict(analytic_unit_id, payload)
elif type == "LEARN":
result = await self.do_learn(analytic_unit_id, payload)
result_payload = await self.do_learn(analytic_unit_id, payload)
else:
result = {
'status': "FAILED",
'error': "unknown type " + str(type)
}
raise ValueError('Unknown task type %s' % type)
except Exception as e:
#traceback.extract_stack()
error_text = traceback.format_exc()
logger.error("do_task Exception: '%s'" % error_text)
# TODO: move result to a class which renders to json for messaging to analytics
result = {
'task': type,
'status': "FAILED",
'analyticUnitId': analytic_unit_id,
'error': str(e)
}
return result
return {
'status': 'SUCCESS',
'payload': result_payload
}
async def do_learn(self, analytic_unit_id, payload):
async def do_learn(self, analytic_unit_id, payload) -> None:
pattern = payload['pattern']
segments = payload['segments']
data = payload['data'] # [time, value][]
detector = self.get_detector(analytic_unit_id, pattern)
detector.synchronize_data()
last_prediction_time = await detector.learn(segments)
# TODO: we should not do predict before labeling in all models, not just in drops
if pattern == 'DROP' and len(segments) == 0:
# TODO: move result to a class which renders to json for messaging to analytics
result = {
'status': 'SUCCESS',
'analyticUnitId': analytic_unit_id,
'segments': [],
'lastPredictionTime': last_prediction_time
}
else:
result = await self.do_predict(analytic_unit_id, last_prediction_time, pattern)
result['task'] = 'LEARN'
return result
await detector.learn(segments)
async def do_predict(self, analytic_unit_id, payload):
pattern = payload['pattern']
last_prediction_time = payload['lastPredictionTime']
data = payload['data'] # [time, value][]
detector = self.get_detector(analytic_unit_id, pattern)
detector.synchronize_data()
segments, last_prediction_time = await detector.predict(last_prediction_time)
segments, last_prediction_time = await detector.predict(data)
return {
'task': 'PREDICT',
'status': 'SUCCESS',
'analyticUnitId': analytic_unit_id,
'segments': segments,
'lastPredictionTime': last_prediction_time
}
def get_detector(self, analytic_unit_id, pattern_type):
if analytic_unit_id not in self.detectors_cache:
if pattern_type == 'GENERAL':
detector = detectors.GeneralDetector(analytic_unit_id)
else:
detector = detectors.PatternDetector(analytic_unit_id, pattern_type)
self.detectors_cache[analytic_unit_id] = detector
return self.detectors_cache[analytic_unit_id]

2
analytics/detectors/__init__.py

@ -1,3 +1,3 @@
from detectors.detector import Detector
from detectors.pattern_detector import PatternDetector
# TODO: do something with general detector
from detectors.general_detector import GeneralDetector

13
analytics/detectors/detector.py

@ -0,0 +1,13 @@
from abc import ABC, abstractmethod
from pandas import DataFrame
class Detector(ABC):
@abstractmethod
def fit(self, dataframe: DataFrame, segments: list):
pass
@abstractmethod
def predict(self, dataframe: DataFrame) -> list:
pass

19
analytics/models/model.py

@ -1,17 +1,8 @@
from abc import ABC, abstractmethod
from pandas import DataFrame
import pickle
class Model(ABC):
def __init__(self):
"""
Variables which are obtained as a result of fit() method
should be stored in self.state dict
in order to be saved in model file
"""
self.state = {}
self.segments = []
@abstractmethod
def fit(self, dataframe: DataFrame, segments: list):
@ -20,11 +11,3 @@ class Model(ABC):
@abstractmethod
def predict(self, dataframe: DataFrame) -> list:
pass
def save(self, model_filename: str):
with open(model_filename, 'wb') as file:
pickle.dump(self.state, file)
def load(self, model_filename: str):
with open(model_filename, 'rb') as f:
self.state = pickle.load(f)

Loading…
Cancel
Save