|
|
|
import numpy as np
|
|
|
|
import pickle
|
|
|
|
from scipy.signal import argrelextrema
|
|
|
|
|
|
|
|
def is_intersect(target_segment, segments):
|
|
|
|
for segment in segments:
|
|
|
|
start = max(segment['start'], target_segment[0])
|
|
|
|
finish = min(segment['finish'], target_segment[1])
|
|
|
|
if start <= finish:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def exponential_smoothing(series, alpha):
|
|
|
|
result = [series[0]]
|
|
|
|
for n in range(1, len(series)):
|
|
|
|
result.append(alpha * series[n] + (1 - alpha) * result[n-1])
|
|
|
|
return result
|
|
|
|
|
|
|
|
class StepDetector:
|
|
|
|
|
|
|
|
def __init__(self, pattern):
|
|
|
|
self.pattern = pattern
|
|
|
|
self.segments = []
|
|
|
|
self.confidence = 1.5
|
|
|
|
|
|
|
|
def fit(self, dataframe, segments):
|
|
|
|
data = dataframe['value']
|
|
|
|
confidences = []
|
|
|
|
for segment in segments:
|
|
|
|
if segment['labeled']:
|
|
|
|
segment_data = data[segment['start'] : segment['finish'] + 1]
|
|
|
|
segment_min = min(segment_data)
|
|
|
|
segment_max = max(segment_data)
|
|
|
|
confidences.append(0.24 * (segment_max - segment_min))
|
|
|
|
if len(confidences) > 0:
|
|
|
|
self.confidence = min(confidences)
|
|
|
|
else:
|
|
|
|
self.confidence = 1.5
|
|
|
|
|
|
|
|
|
|
|
|
def predict(self, dataframe):
|
|
|
|
data = dataframe['value']
|
|
|
|
|
|
|
|
result = self.__predict(data)
|
|
|
|
result.sort()
|
|
|
|
|
|
|
|
if len(self.segments) > 0:
|
|
|
|
result = [segment for segment in result if not is_intersect(segment, self.segments)]
|
|
|
|
return result
|
|
|
|
|
|
|
|
def __predict(self, data):
|
|
|
|
window_size = 24
|
|
|
|
all_max_flatten_data = data.rolling(window=window_size).mean()
|
|
|
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
|
|
|
|
extrema_list = []
|
|
|
|
|
|
|
|
for i in exponential_smoothing(data - self.confidence, 0.03):
|
|
|
|
extrema_list.append(i)
|
|
|
|
|
|
|
|
segments = []
|
|
|
|
for i in all_mins:
|
|
|
|
if all_max_flatten_data[i] < extrema_list[i]:
|
|
|
|
segments.append(i - window_size)
|
|
|
|
|
|
|
|
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)]
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments, all_max_flatten_data):
|
|
|
|
delete_list = []
|
|
|
|
for i in segments:
|
|
|
|
new_data = all_max_flatten_data[i-50:i+250]
|
|
|
|
min_value = 100
|
|
|
|
for val in new_data:
|
|
|
|
if val < min_value:
|
|
|
|
min_value = val
|
|
|
|
if all_max_flatten_data[i] > min_value:
|
|
|
|
delete_list.append(i)
|
|
|
|
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
return segments
|
|
|
|
|
|
|
|
def save(self, model_filename):
|
|
|
|
with open(model_filename, 'wb') as file:
|
|
|
|
pickle.dump((self.confidence), file)
|
|
|
|
|
|
|
|
def load(self, model_filename):
|
|
|
|
try:
|
|
|
|
with open(model_filename, 'rb') as file:
|
|
|
|
self.confidence = pickle.load(file)
|
|
|
|
except:
|
|
|
|
pass
|