You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
4.4 KiB
112 lines
4.4 KiB
from models import Model |
|
|
|
import scipy.signal |
|
from scipy.fftpack import fft |
|
from scipy.signal import argrelextrema |
|
|
|
import utils |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
class TroughModel(Model): |
|
|
|
def __init__(self): |
|
super() |
|
self.segments = [] |
|
self.itroughs = [] |
|
self.state = { |
|
'confidence': 1.5, |
|
'convolve_max': 570000, |
|
'convolve_min': 530000, |
|
'WINDOW_SIZE': 240, |
|
} |
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None: |
|
data = dataframe['value'] |
|
confidences = [] |
|
convolve_list = [] |
|
for segment in segments: |
|
if segment['labeled']: |
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
if len(segment_data) == 0: |
|
continue |
|
segment_min = min(segment_data) |
|
segment_max = max(segment_data) |
|
confidences.append(0.2 * (segment_max - segment_min)) |
|
segment_min_index = segment_data.idxmin() |
|
self.itroughs.append(segment_min_index) |
|
labeled_trough = data[segment_min_index - self.state['WINDOW_SIZE'] : segment_min_index + self.state['WINDOW_SIZE']] |
|
labeled_trough = labeled_trough - min(labeled_trough) |
|
auto_convolve = scipy.signal.fftconvolve(labeled_trough, labeled_trough) |
|
first_trough = data[self.itroughs[0] - self.state['WINDOW_SIZE']: self.itroughs[0] + self.state['WINDOW_SIZE']] |
|
first_trough = first_trough - min(first_trough) |
|
convolve_trough = scipy.signal.fftconvolve(labeled_trough, first_trough) |
|
convolve_list.append(max(auto_convolve)) |
|
convolve_list.append(max(convolve_trough)) |
|
|
|
if len(confidences) > 0: |
|
self.state['confidence'] = float(min(confidences)) |
|
else: |
|
self.state['confidence'] = 1.5 |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_max'] = float(max(convolve_list)) |
|
else: |
|
self.state['convolve_max'] = self.state['WINDOW_SIZE'] |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_min'] = float(min(convolve_list)) |
|
else: |
|
self.state['convolve_min'] = self.state['WINDOW_SIZE'] |
|
|
|
def do_predict(self, dataframe: pd.DataFrame): |
|
data = dataframe['value'] |
|
window_size = 24 |
|
all_mins = argrelextrema(np.array(data), np.less)[0] |
|
|
|
extrema_list = [] |
|
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.02): |
|
extrema_list.append(i) |
|
|
|
segments = [] |
|
for i in all_mins: |
|
if data[i] < extrema_list[i]: |
|
segments.append(i) |
|
|
|
return self.__filter_prediction(segments, data) |
|
|
|
def __filter_prediction(self, segments: list, data: list) -> list: |
|
delete_list = [] |
|
variance_error = int(0.004 * len(data)) |
|
if variance_error > 50: |
|
variance_error = 50 |
|
for i in range(1, len(segments)): |
|
if segments[i] < segments[i - 1] + variance_error: |
|
delete_list.append(segments[i]) |
|
for item in delete_list: |
|
segments.remove(item) |
|
|
|
delete_list = [] |
|
if len(segments) == 0 or len(self.itroughs) == 0 : |
|
segments = [] |
|
return segments |
|
pattern_data = data[self.itroughs[0] - self.state['WINDOW_SIZE'] : self.itroughs[0] + self.state['WINDOW_SIZE']] |
|
pattern_data = pattern_data - min(pattern_data) |
|
for segment in segments: |
|
if segment > self.state['WINDOW_SIZE']: |
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE']] |
|
convol_data = convol_data - min(convol_data) |
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
|
if max(conv) > self.state['convolve_max'] * 1.05 or max(conv) < self.state['convolve_min'] * 0.95: |
|
delete_list.append(segment) |
|
else: |
|
delete_list.append(segment) |
|
# TODO: implement filtering |
|
for item in delete_list: |
|
segments.remove(item) |
|
|
|
return set(segments)
|
|
|