You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

113 lines
4.4 KiB

from models import Model
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
import utils
import numpy as np
import pandas as pd
class TroughModel(Model):
def __init__(self):
super()
self.segments = []
self.itroughs = []
self.state = {
'confidence': 1.5,
'convolve_max': 570000,
'convolve_min': 530000,
'WINDOW_SIZE': 240,
}
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None:
data = dataframe['value']
confidences = []
convolve_list = []
for segment in segments:
if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0:
continue
segment_min = min(segment_data)
segment_max = max(segment_data)
confidences.append(0.2 * (segment_max - segment_min))
segment_min_index = segment_data.idxmin()
self.itroughs.append(segment_min_index)
labeled_trough = data[segment_min_index - self.state['WINDOW_SIZE'] : segment_min_index + self.state['WINDOW_SIZE']]
labeled_trough = labeled_trough - min(labeled_trough)
auto_convolve = scipy.signal.fftconvolve(labeled_trough, labeled_trough)
first_trough = data[self.itroughs[0] - self.state['WINDOW_SIZE']: self.itroughs[0] + self.state['WINDOW_SIZE']]
first_trough = first_trough - min(first_trough)
convolve_trough = scipy.signal.fftconvolve(labeled_trough, first_trough)
convolve_list.append(max(auto_convolve))
convolve_list.append(max(convolve_trough))
if len(confidences) > 0:
self.state['confidence'] = float(min(confidences))
else:
self.state['confidence'] = 1.5
if len(convolve_list) > 0:
self.state['convolve_max'] = float(max(convolve_list))
else:
self.state['convolve_max'] = self.state['WINDOW_SIZE']
if len(convolve_list) > 0:
self.state['convolve_min'] = float(min(convolve_list))
else:
self.state['convolve_min'] = self.state['WINDOW_SIZE']
def do_predict(self, dataframe: pd.DataFrame):
data = dataframe['value']
window_size = 24
all_mins = argrelextrema(np.array(data), np.less)[0]
extrema_list = []
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.02):
extrema_list.append(i)
segments = []
for i in all_mins:
if data[i] < extrema_list[i]:
6 years ago
segments.append(i)
return self.__filter_prediction(segments, data)
def __filter_prediction(self, segments: list, data: list) -> list:
delete_list = []
variance_error = int(0.004 * len(data))
if variance_error > 50:
variance_error = 50
for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error:
delete_list.append(segments[i])
for item in delete_list:
segments.remove(item)
delete_list = []
if len(segments) == 0 or len(self.itroughs) == 0 :
segments = []
return segments
pattern_data = data[self.itroughs[0] - self.state['WINDOW_SIZE'] : self.itroughs[0] + self.state['WINDOW_SIZE']]
pattern_data = pattern_data - min(pattern_data)
for segment in segments:
if segment > self.state['WINDOW_SIZE']:
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE']]
convol_data = convol_data - min(convol_data)
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.state['convolve_max'] * 1.05 or max(conv) < self.state['convolve_min'] * 0.95:
delete_list.append(segment)
else:
delete_list.append(segment)
# TODO: implement filtering
for item in delete_list:
segments.remove(item)
return set(segments)