|
|
@ -87,18 +87,16 @@ class AnomalyDetector(ProcessingDetector): |
|
|
|
seasonality_index = seasonality // time_step |
|
|
|
seasonality_index = seasonality // time_step |
|
|
|
#TODO: upper and lower bounds for segment_data |
|
|
|
#TODO: upper and lower bounds for segment_data |
|
|
|
segment_data = utils.exponential_smoothing(pd.Series(segment['data']), BASIC_ALPHA) |
|
|
|
segment_data = utils.exponential_smoothing(pd.Series(segment['data']), BASIC_ALPHA) |
|
|
|
upper_seasonality_curve = self.add_season_to_data( |
|
|
|
upper_bound = self.add_season_to_data( |
|
|
|
smoothed_data, segment_data, seasonality_offset, seasonality_index, True |
|
|
|
upper_bound, segment_data, seasonality_offset, seasonality_index, True |
|
|
|
) |
|
|
|
) |
|
|
|
lower_seasonality_curve = self.add_season_to_data( |
|
|
|
lower_bound = self.add_season_to_data( |
|
|
|
smoothed_data, segment_data, seasonality_offset, seasonality_index, False |
|
|
|
lower_bound, segment_data, seasonality_offset, seasonality_index, False |
|
|
|
) |
|
|
|
) |
|
|
|
assert len(smoothed_data) == len(upper_seasonality_curve), \ |
|
|
|
assert len(smoothed_data) == len(upper_bound) == len(lower_bound), \ |
|
|
|
f'len smoothed {len(smoothed_data)} != len seasonality {len(upper_seasonality_curve)}' |
|
|
|
f'len smoothed {len(smoothed_data)} != len seasonality {len(upper_bound)}' |
|
|
|
|
|
|
|
|
|
|
|
# TODO: use class for cache to avoid using string literals |
|
|
|
# TODO: use class for cache to avoid using string literals |
|
|
|
upper_bound = upper_seasonality_curve + cache['confidence'] |
|
|
|
|
|
|
|
lower_bound = lower_seasonality_curve - cache['confidence'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
anomaly_indexes = [] |
|
|
|
anomaly_indexes = [] |
|
|
|
for idx, val in enumerate(data.values): |
|
|
|
for idx, val in enumerate(data.values): |
|
|
@ -172,10 +170,11 @@ class AnomalyDetector(ProcessingDetector): |
|
|
|
|
|
|
|
|
|
|
|
# TODO: exponential_smoothing should return dataframe with related timestamps |
|
|
|
# TODO: exponential_smoothing should return dataframe with related timestamps |
|
|
|
smoothed = utils.exponential_smoothing(dataframe['value'], cache['alpha'], cache.get('lastValue')) |
|
|
|
smoothed = utils.exponential_smoothing(dataframe['value'], cache['alpha'], cache.get('lastValue')) |
|
|
|
|
|
|
|
upper_bound = smoothed + cache['confidence'] |
|
|
|
|
|
|
|
lower_bound = smoothed - cache['confidence'] |
|
|
|
|
|
|
|
|
|
|
|
# TODO: remove duplication with detect() |
|
|
|
# TODO: remove duplication with detect() |
|
|
|
upper_bound = dataframe['value'] + cache['confidence'] |
|
|
|
|
|
|
|
lower_bound = dataframe['value'] - cache['confidence'] |
|
|
|
|
|
|
|
if segments is not None: |
|
|
|
if segments is not None: |
|
|
|
seasonality = cache.get('seasonality') |
|
|
|
seasonality = cache.get('seasonality') |
|
|
|
assert seasonality is not None and seasonality > 0, \ |
|
|
|
assert seasonality is not None and seasonality > 0, \ |
|
|
@ -188,19 +187,16 @@ class AnomalyDetector(ProcessingDetector): |
|
|
|
seasonality_offset = (abs(segment['from'] - data_start_time) % seasonality) // time_step |
|
|
|
seasonality_offset = (abs(segment['from'] - data_start_time) % seasonality) // time_step |
|
|
|
seasonality_index = seasonality // time_step |
|
|
|
seasonality_index = seasonality // time_step |
|
|
|
segment_data = utils.exponential_smoothing(pd.Series(segment['data']), BASIC_ALPHA) |
|
|
|
segment_data = utils.exponential_smoothing(pd.Series(segment['data']), BASIC_ALPHA) |
|
|
|
upper_seasonality_curve = self.add_season_to_data( |
|
|
|
upper_bound = self.add_season_to_data( |
|
|
|
smoothed, segment_data, seasonality_offset, seasonality_index, True |
|
|
|
upper_bound, segment_data, seasonality_offset, seasonality_index, True |
|
|
|
) |
|
|
|
) |
|
|
|
lower_seasonality_curve = self.add_season_to_data( |
|
|
|
lower_bound = self.add_season_to_data( |
|
|
|
smoothed, segment_data, seasonality_offset, seasonality_index, False |
|
|
|
lower_bound, segment_data, seasonality_offset, seasonality_index, False |
|
|
|
) |
|
|
|
) |
|
|
|
assert len(smoothed) == len(upper_seasonality_curve), \ |
|
|
|
assert len(smoothed) == len(upper_bound) == len(lower_bound), \ |
|
|
|
f'len smoothed {len(smoothed)} != len seasonality {len(upper_seasonality_curve)}' |
|
|
|
f'len smoothed {len(smoothed)} != len seasonality {len(upper_bound)}' |
|
|
|
smoothed = upper_seasonality_curve |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: support multiple segments |
|
|
|
# TODO: support multiple segments |
|
|
|
upper_bound = upper_seasonality_curve + cache['confidence'] |
|
|
|
|
|
|
|
lower_bound = lower_seasonality_curve - cache['confidence'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
timestamps = utils.convert_series_to_timestamp_list(dataframe.timestamp) |
|
|
|
timestamps = utils.convert_series_to_timestamp_list(dataframe.timestamp) |
|
|
|
upper_bound_timeseries = list(zip(timestamps, upper_bound.values.tolist())) |
|
|
|
upper_bound_timeseries = list(zip(timestamps, upper_bound.values.tolist())) |
|
|
|