|
|
@ -23,6 +23,8 @@ class TroughModel(Model): |
|
|
|
'convolve_max': 570000, |
|
|
|
'convolve_max': 570000, |
|
|
|
'convolve_min': 530000, |
|
|
|
'convolve_min': 530000, |
|
|
|
'WINDOW_SIZE': 240, |
|
|
|
'WINDOW_SIZE': 240, |
|
|
|
|
|
|
|
'conv_del_min': 54000, |
|
|
|
|
|
|
|
'conv_del_max': 55000, |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None: |
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None: |
|
|
@ -56,6 +58,20 @@ class TroughModel(Model): |
|
|
|
convolve_list.append(max(auto_convolve)) |
|
|
|
convolve_list.append(max(auto_convolve)) |
|
|
|
convolve_list.append(max(convolve_trough)) |
|
|
|
convolve_list.append(max(convolve_trough)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
del_conv_list = [] |
|
|
|
|
|
|
|
for segment in segments: |
|
|
|
|
|
|
|
if segment['deleted']: |
|
|
|
|
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
|
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
|
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
|
|
|
|
if len(segment_data) == 0: |
|
|
|
|
|
|
|
continue |
|
|
|
|
|
|
|
del_min_index = segment_data.idxmin() |
|
|
|
|
|
|
|
deleted_trough = data[del_min_index - self.state['WINDOW_SIZE']: del_min_index + self.state['WINDOW_SIZE'] + 1] |
|
|
|
|
|
|
|
deleted_trough = deleted_trough - min(deleted_trough) |
|
|
|
|
|
|
|
del_conv_trough = scipy.signal.fftconvolve(deleted_trough, self.model_trough) |
|
|
|
|
|
|
|
del_conv_list.append(max(del_conv_trough)) |
|
|
|
|
|
|
|
|
|
|
|
if len(confidences) > 0: |
|
|
|
if len(confidences) > 0: |
|
|
|
self.state['confidence'] = float(min(confidences)) |
|
|
|
self.state['confidence'] = float(min(confidences)) |
|
|
|
else: |
|
|
|
else: |
|
|
@ -71,6 +87,16 @@ class TroughModel(Model): |
|
|
|
else: |
|
|
|
else: |
|
|
|
self.state['convolve_min'] = self.state['WINDOW_SIZE'] |
|
|
|
self.state['convolve_min'] = self.state['WINDOW_SIZE'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(del_conv_list) > 0: |
|
|
|
|
|
|
|
self.state['conv_del_min'] = float(min(del_conv_list)) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
self.state['conv_del_min'] = self.state['WINDOW_SIZE'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(del_conv_list) > 0: |
|
|
|
|
|
|
|
self.state['conv_del_max'] = float(max(del_conv_list)) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
self.state['conv_del_max'] = self.state['WINDOW_SIZE'] |
|
|
|
|
|
|
|
|
|
|
|
def do_predict(self, dataframe: pd.DataFrame): |
|
|
|
def do_predict(self, dataframe: pd.DataFrame): |
|
|
|
data = dataframe['value'] |
|
|
|
data = dataframe['value'] |
|
|
|
window_size = int(len(data)/SMOOTHING_COEFF) #test ws on flat data |
|
|
|
window_size = int(len(data)/SMOOTHING_COEFF) #test ws on flat data |
|
|
@ -102,7 +128,7 @@ class TroughModel(Model): |
|
|
|
if len(segments) == 0 or len(self.itroughs) == 0 : |
|
|
|
if len(segments) == 0 or len(self.itroughs) == 0 : |
|
|
|
segments = [] |
|
|
|
segments = [] |
|
|
|
return segments |
|
|
|
return segments |
|
|
|
pattern_data = self.model_peak |
|
|
|
pattern_data = self.model_trough |
|
|
|
for segment in segments: |
|
|
|
for segment in segments: |
|
|
|
if segment > self.state['WINDOW_SIZE']: |
|
|
|
if segment > self.state['WINDOW_SIZE']: |
|
|
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1] |
|
|
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1] |
|
|
@ -110,6 +136,8 @@ class TroughModel(Model): |
|
|
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
|
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
|
|
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_min'] * 0.9: |
|
|
|
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_min'] * 0.9: |
|
|
|
delete_list.append(segment) |
|
|
|
delete_list.append(segment) |
|
|
|
|
|
|
|
if max(conv) < self.state['conv_del_max'] * 1.02 and max(conv) > self.state['conv_del_min'] * 0.98: |
|
|
|
|
|
|
|
delete_list.append(segment) |
|
|
|
else: |
|
|
|
else: |
|
|
|
delete_list.append(segment) |
|
|
|
delete_list.append(segment) |
|
|
|
# TODO: implement filtering |
|
|
|
# TODO: implement filtering |
|
|
|