Alexandr Velikiy
6 years ago
committed by
Evgeny Smyshlyaev
4 changed files with 82 additions and 1 deletions
@ -1,3 +1,4 @@
|
||||
from detectors.detector import Detector |
||||
from detectors.pattern_detector import PatternDetector |
||||
from detectors.threshold_detector import ThresholdDetector |
||||
from detectors.anomaly_detector import AnomalyDetector |
||||
|
@ -0,0 +1,78 @@
|
||||
import logging |
||||
import pandas as pd |
||||
from typing import Optional, Union, List, Tuple |
||||
|
||||
from analytic_types.data_bucket import DataBucket |
||||
from detectors import Detector |
||||
from models import ModelCache |
||||
import utils |
||||
|
||||
logger = logging.getLogger('ANOMALY_DETECTOR') |
||||
|
||||
|
||||
class AnomalyDetector(Detector): |
||||
|
||||
def __init__(self, *args, **kwargs): |
||||
self.bucket = DataBucket() |
||||
|
||||
def train(self, dataframe: pd.DataFrame, payload: Union[list, dict], cache: Optional[ModelCache]) -> ModelCache: |
||||
return { |
||||
'cache': { |
||||
'confidence': payload['confidence'], |
||||
'alpha': payload['alpha'] |
||||
} |
||||
} |
||||
|
||||
def detect(self, dataframe: pd.DataFrame, cache: Optional[ModelCache]) -> dict: |
||||
data = dataframe['value'] |
||||
last_values = None |
||||
if cache is not None: |
||||
last_values = cache['last_values'] |
||||
|
||||
#TODO detection code here |
||||
smoth_data = utils.exponential_smoothing(data, cache['alpha']) |
||||
upper_bound = utils.exponential_smoothing(data + cache['confidence'], cache['alpha']) |
||||
lower_bound = utils.exponential_smoothing(data - cache['confidence'], cache['alpha']) |
||||
|
||||
segemnts = [] |
||||
for idx, val in enumerate(data.values): |
||||
if val > upper_bound[idx] or val < lower_bound[idx]: |
||||
segemnts.append(idx) |
||||
|
||||
last_detection_time = dataframe['timestamp'][-1] |
||||
return { |
||||
'cache': cache, |
||||
'segments': segemnts, |
||||
'lastDetectionTime': last_detection_time |
||||
} |
||||
|
||||
def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[dict]: |
||||
self.detect(data, cache) |
||||
|
||||
|
||||
def __smooth_data(self, dataframe: pd.DataFrame) -> List[Tuple[int, float]]: |
||||
''' |
||||
smooth data using exponential smoothing/moving average/weighted_average |
||||
''' |
||||
|
||||
def __get_confidence_window(self, smooth_data: pd.Series, condfidence: float) -> Tuple[pd.Series, pd.Series]: |
||||
''' |
||||
build confidence interval above and below smoothed data |
||||
''' |
||||
|
||||
def __get_dependency_level(self, alpha: float) -> int: |
||||
''' |
||||
get the number of values that will affect the next value |
||||
''' |
||||
|
||||
for level in range(1, 100): |
||||
if (1 - alpha) ** level < 0.1: |
||||
break |
||||
return level |
||||
|
||||
def get_window_size(self, cache: Optional[ModelCache]) -> int: |
||||
if cache is None: |
||||
raise ValueError('anomaly detector got None cache') |
||||
|
||||
#TODO: calculate value based on `alpha` value from cache |
||||
return 1 |
Loading…
Reference in new issue