Browse Source

Exponential smoothing for anomaly detector #610 (#611)

pull/1/head
Alexandr Velikiy 6 years ago committed by Evgeny Smyshlyaev
parent
commit
cb040b397b
  1. 16
      analytics/analytics/utils/common.py

16
analytics/analytics/utils/common.py

@ -6,7 +6,7 @@ from scipy.signal import argrelextrema
from scipy.stats import gaussian_kde
from scipy.stats.stats import pearsonr
import math
from typing import Union, List, Generator, Tuple
from typing import Optional, Union, List, Generator, Tuple
import utils
import logging
from itertools import islice
@ -16,15 +16,23 @@ SHIFT_FACTOR = 0.05
CONFIDENCE_FACTOR = 0.5
SMOOTHING_FACTOR = 5
def exponential_smoothing(series, alpha):
result = [series[0]]
def exponential_smoothing(series: pd.Series, alpha: float, last_smoothed_value: Optional[float] = None) -> pd.Series:
if alpha < 0 or alpha > 1:
raise ValueError('Alpha must be within the boundaries: 0 <= alpha <= 1')
if len(series) < 2:
return series
if last_smoothed_value is None:
result = [series.values[0]]
else:
result = [float(last_smoothed_value)]
if np.isnan(result):
result = [0]
for n in range(1, len(series)):
if np.isnan(series[n]):
series[n] = 0
result.append(alpha * series[n] + (1 - alpha) * result[n - 1])
return result
return pd.Series(result, index = series.index)
def segments_box(segments):
max_time = 0

Loading…
Cancel
Save