|
|
|
@ -6,7 +6,7 @@ from scipy.signal import argrelextrema
|
|
|
|
|
from scipy.stats import gaussian_kde |
|
|
|
|
from scipy.stats.stats import pearsonr |
|
|
|
|
import math |
|
|
|
|
from typing import Union, List, Generator, Tuple |
|
|
|
|
from typing import Optional, Union, List, Generator, Tuple |
|
|
|
|
import utils |
|
|
|
|
import logging |
|
|
|
|
from itertools import islice |
|
|
|
@ -16,15 +16,23 @@ SHIFT_FACTOR = 0.05
|
|
|
|
|
CONFIDENCE_FACTOR = 0.5 |
|
|
|
|
SMOOTHING_FACTOR = 5 |
|
|
|
|
|
|
|
|
|
def exponential_smoothing(series, alpha): |
|
|
|
|
result = [series[0]] |
|
|
|
|
|
|
|
|
|
def exponential_smoothing(series: pd.Series, alpha: float, last_smoothed_value: Optional[float] = None) -> pd.Series: |
|
|
|
|
if alpha < 0 or alpha > 1: |
|
|
|
|
raise ValueError('Alpha must be within the boundaries: 0 <= alpha <= 1') |
|
|
|
|
if len(series) < 2: |
|
|
|
|
return series |
|
|
|
|
if last_smoothed_value is None: |
|
|
|
|
result = [series.values[0]] |
|
|
|
|
else: |
|
|
|
|
result = [float(last_smoothed_value)] |
|
|
|
|
if np.isnan(result): |
|
|
|
|
result = [0] |
|
|
|
|
for n in range(1, len(series)): |
|
|
|
|
if np.isnan(series[n]): |
|
|
|
|
series[n] = 0 |
|
|
|
|
result.append(alpha * series[n] + (1 - alpha) * result[n - 1]) |
|
|
|
|
return result |
|
|
|
|
return pd.Series(result, index = series.index) |
|
|
|
|
|
|
|
|
|
def segments_box(segments): |
|
|
|
|
max_time = 0 |
|
|
|
|