|
|
|
@ -1,10 +1,11 @@
|
|
|
|
|
import models |
|
|
|
|
|
|
|
|
|
import asyncio |
|
|
|
|
import logging |
|
|
|
|
import config |
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
|
|
|
from typing import Optional |
|
|
|
|
from typing import Optional, Generator |
|
|
|
|
|
|
|
|
|
from detectors import Detector |
|
|
|
|
from buckets import DataBucket |
|
|
|
@ -33,11 +34,12 @@ def resolve_model_by_pattern(pattern: str) -> models.Model:
|
|
|
|
|
AnalyticUnitId = str |
|
|
|
|
class PatternDetector(Detector): |
|
|
|
|
|
|
|
|
|
MIN_BUCKET_SIZE = 150 |
|
|
|
|
|
|
|
|
|
def __init__(self, pattern_type: str, analytic_unit_id: AnalyticUnitId): |
|
|
|
|
self.analytic_unit_id = analytic_unit_id |
|
|
|
|
self.pattern_type = pattern_type |
|
|
|
|
self.model = resolve_model_by_pattern(self.pattern_type) |
|
|
|
|
self.min_bucket_size = 150 |
|
|
|
|
self.bucket = DataBucket() |
|
|
|
|
|
|
|
|
|
def train(self, dataframe: pd.DataFrame, segments: list, cache: Optional[models.ModelCache]) -> models.ModelCache: |
|
|
|
@ -49,12 +51,32 @@ class PatternDetector(Detector):
|
|
|
|
|
'cache': new_cache |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
def detect(self, dataframe: pd.DataFrame, cache: Optional[models.ModelCache]) -> dict: |
|
|
|
|
async def detect(self, dataframe: pd.DataFrame, cache: Optional[models.ModelCache]) -> dict: |
|
|
|
|
logger.debug('Unit {} got {} data points for detection'.format(self.analytic_unit_id, len(dataframe))) |
|
|
|
|
# TODO: split and sleep (https://github.com/hastic/hastic-server/pull/124#discussion_r214085643) |
|
|
|
|
|
|
|
|
|
if not cache: |
|
|
|
|
msg = f'{self.analytic_unit_id} detection got invalid cache {cache}, skip detection' |
|
|
|
|
logger.error(msg) |
|
|
|
|
raise ValueError(msg) |
|
|
|
|
|
|
|
|
|
window_size = cache.get('WINDOW_SIZE') |
|
|
|
|
|
|
|
|
|
if not window_size: |
|
|
|
|
msg = f'{self.analytic_unit_id} detection got invalid window size {window_size}' |
|
|
|
|
|
|
|
|
|
chunks = self.__get_data_chunks(dataframe, window_size) |
|
|
|
|
|
|
|
|
|
segments = [] |
|
|
|
|
segment_parser = lambda segment: { 'from': segment[0], 'to': segment[1] } |
|
|
|
|
for chunk in chunks: |
|
|
|
|
await asyncio.sleep(0) |
|
|
|
|
detected = self.model.detect(dataframe, self.analytic_unit_id, cache) |
|
|
|
|
for detected_segment in detected['segments']: |
|
|
|
|
detected_segment = segment_parser(detected_segment) |
|
|
|
|
if detected_segment not in segments: |
|
|
|
|
segments.append(detected_segment) |
|
|
|
|
|
|
|
|
|
segments = [{ 'from': segment[0], 'to': segment[1] } for segment in detected['segments']] |
|
|
|
|
newCache = detected['cache'] |
|
|
|
|
|
|
|
|
|
last_dataframe_time = dataframe.iloc[-1]['timestamp'] |
|
|
|
@ -76,7 +98,7 @@ class PatternDetector(Detector):
|
|
|
|
|
if cache == None: |
|
|
|
|
logging.debug('Recieve_data cache is None for task {}'.format(self.analytic_unit_id)) |
|
|
|
|
cache = {} |
|
|
|
|
bucket_size = max(cache.get('WINDOW_SIZE', 0) * 3, self.min_bucket_size) |
|
|
|
|
bucket_size = max(cache.get('WINDOW_SIZE', 0) * 3, self.MIN_BUCKET_SIZE) |
|
|
|
|
|
|
|
|
|
res = self.detect(self.bucket.data, cache) |
|
|
|
|
|
|
|
|
@ -88,3 +110,31 @@ class PatternDetector(Detector):
|
|
|
|
|
return res |
|
|
|
|
else: |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
def __get_data_chunks(self, dataframe: pd.DataFrame, window_size: int) -> Generator[pd.DataFrame, None, None]: |
|
|
|
|
""" |
|
|
|
|
TODO: fix description |
|
|
|
|
Return generator, that yields dataframe's chunks. Chunks have 3 WINDOW_SIZE length and 2 WINDOW_SIZE step. |
|
|
|
|
Example: recieved dataframe: [0, 1, 2, 3, 4, 5], returned chunks [0, 1, 2], [2, 3, 4], [4, 5]. |
|
|
|
|
""" |
|
|
|
|
chunk_size = window_size * 100 |
|
|
|
|
intersection = window_size |
|
|
|
|
|
|
|
|
|
data_len = len(dataframe) |
|
|
|
|
|
|
|
|
|
if data_len < chunk_size: |
|
|
|
|
return (chunk for chunk in (dataframe,)) |
|
|
|
|
|
|
|
|
|
def slices(): |
|
|
|
|
nonintersected = chunk_size - intersection |
|
|
|
|
mod = data_len % nonintersected |
|
|
|
|
chunks_number = data_len // nonintersected |
|
|
|
|
|
|
|
|
|
offset = 0 |
|
|
|
|
for i in range(chunks_number): |
|
|
|
|
yield slice(offset, offset + nonintersected + 1) |
|
|
|
|
offset += nonintersected |
|
|
|
|
|
|
|
|
|
yield slice(offset, offset + mod) |
|
|
|
|
|
|
|
|
|
return (dataframe[chunk_slice] for chunk_slice in slices()) |
|
|
|
|