|
|
|
@ -8,6 +8,8 @@ import utils
|
|
|
|
|
import numpy as np |
|
|
|
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
SMOOTHING_COEFF = 2400 |
|
|
|
|
EXP_SMOOTHING_FACTOR = 0.01 |
|
|
|
|
|
|
|
|
|
class TroughModel(Model): |
|
|
|
|
|
|
|
|
@ -15,6 +17,7 @@ class TroughModel(Model):
|
|
|
|
|
super() |
|
|
|
|
self.segments = [] |
|
|
|
|
self.itroughs = [] |
|
|
|
|
self.model_trough = [] |
|
|
|
|
self.state = { |
|
|
|
|
'confidence': 1.5, |
|
|
|
|
'convolve_max': 570000, |
|
|
|
@ -26,6 +29,7 @@ class TroughModel(Model):
|
|
|
|
|
data = dataframe['value'] |
|
|
|
|
confidences = [] |
|
|
|
|
convolve_list = [] |
|
|
|
|
patterns_list = [] |
|
|
|
|
for segment in segments: |
|
|
|
|
if segment['labeled']: |
|
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
@ -39,12 +43,16 @@ class TroughModel(Model):
|
|
|
|
|
confidences.append(0.2 * (segment_max - segment_min)) |
|
|
|
|
segment_min_index = segment_data.idxmin() |
|
|
|
|
self.itroughs.append(segment_min_index) |
|
|
|
|
labeled_trough = data[segment_min_index - self.state['WINDOW_SIZE'] : segment_min_index + self.state['WINDOW_SIZE']] |
|
|
|
|
labeled_trough = data[segment_min_index - self.state['WINDOW_SIZE'] : segment_min_index + self.state['WINDOW_SIZE'] + 1] |
|
|
|
|
labeled_trough = labeled_trough - min(labeled_trough) |
|
|
|
|
patterns_list.append(labeled_trough) |
|
|
|
|
|
|
|
|
|
self.model_trough = utils.get_av_model(patterns_list) |
|
|
|
|
for n in range(len(segments)): |
|
|
|
|
labeled_trough = data[self.itroughs[n] - self.state['WINDOW_SIZE']: self.itroughs[n] + self.state['WINDOW_SIZE'] + 1] |
|
|
|
|
labeled_trough = labeled_trough - min(labeled_trough) |
|
|
|
|
auto_convolve = scipy.signal.fftconvolve(labeled_trough, labeled_trough) |
|
|
|
|
first_trough = data[self.itroughs[0] - self.state['WINDOW_SIZE']: self.itroughs[0] + self.state['WINDOW_SIZE']] |
|
|
|
|
first_trough = first_trough - min(first_trough) |
|
|
|
|
convolve_trough = scipy.signal.fftconvolve(labeled_trough, first_trough) |
|
|
|
|
convolve_trough = scipy.signal.fftconvolve(labeled_trough, self.model_trough) |
|
|
|
|
convolve_list.append(max(auto_convolve)) |
|
|
|
|
convolve_list.append(max(convolve_trough)) |
|
|
|
|
|
|
|
|
@ -65,11 +73,11 @@ class TroughModel(Model):
|
|
|
|
|
|
|
|
|
|
def do_predict(self, dataframe: pd.DataFrame): |
|
|
|
|
data = dataframe['value'] |
|
|
|
|
window_size = 24 |
|
|
|
|
window_size = int(len(data)/SMOOTHING_COEFF) #test ws on flat data |
|
|
|
|
all_mins = argrelextrema(np.array(data), np.less)[0] |
|
|
|
|
|
|
|
|
|
extrema_list = [] |
|
|
|
|
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.02): |
|
|
|
|
for i in utils.exponential_smoothing(data - self.state['confidence'], EXP_SMOOTHING_FACTOR): |
|
|
|
|
extrema_list.append(i) |
|
|
|
|
|
|
|
|
|
segments = [] |
|
|
|
@ -82,8 +90,8 @@ class TroughModel(Model):
|
|
|
|
|
def __filter_prediction(self, segments: list, data: list) -> list: |
|
|
|
|
delete_list = [] |
|
|
|
|
variance_error = int(0.004 * len(data)) |
|
|
|
|
if variance_error > 50: |
|
|
|
|
variance_error = 50 |
|
|
|
|
if variance_error > self.state['WINDOW_SIZE']: |
|
|
|
|
variance_error = self.state['WINDOW_SIZE'] |
|
|
|
|
for i in range(1, len(segments)): |
|
|
|
|
if segments[i] < segments[i - 1] + variance_error: |
|
|
|
|
delete_list.append(segments[i]) |
|
|
|
@ -94,14 +102,13 @@ class TroughModel(Model):
|
|
|
|
|
if len(segments) == 0 or len(self.itroughs) == 0 : |
|
|
|
|
segments = [] |
|
|
|
|
return segments |
|
|
|
|
pattern_data = data[self.itroughs[0] - self.state['WINDOW_SIZE'] : self.itroughs[0] + self.state['WINDOW_SIZE']] |
|
|
|
|
pattern_data = pattern_data - min(pattern_data) |
|
|
|
|
pattern_data = self.model_peak |
|
|
|
|
for segment in segments: |
|
|
|
|
if segment > self.state['WINDOW_SIZE']: |
|
|
|
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE']] |
|
|
|
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1] |
|
|
|
|
convol_data = convol_data - min(convol_data) |
|
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
|
|
|
|
if max(conv) > self.state['convolve_max'] * 1.05 or max(conv) < self.state['convolve_min'] * 0.95: |
|
|
|
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
|
|
|
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_min'] * 0.9: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|
else: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|