Browse Source

add common model in troughs (#164)

common model with last comments
pull/1/head
Alexandr Velikiy 6 years ago committed by Alexey Velikiy
parent
commit
cc2f793ffb
  1. 39
      analytics/models/trough_model.py

39
analytics/models/trough_model.py

@ -8,6 +8,8 @@ import utils
import numpy as np
import pandas as pd
SMOOTHING_COEFF = 2400
EXP_SMOOTHING_FACTOR = 0.01
class TroughModel(Model):
@ -15,6 +17,7 @@ class TroughModel(Model):
super()
self.segments = []
self.itroughs = []
self.model_trough = []
self.state = {
'confidence': 1.5,
'convolve_max': 570000,
@ -26,6 +29,7 @@ class TroughModel(Model):
data = dataframe['value']
confidences = []
convolve_list = []
patterns_list = []
for segment in segments:
if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
@ -39,14 +43,18 @@ class TroughModel(Model):
confidences.append(0.2 * (segment_max - segment_min))
segment_min_index = segment_data.idxmin()
self.itroughs.append(segment_min_index)
labeled_trough = data[segment_min_index - self.state['WINDOW_SIZE'] : segment_min_index + self.state['WINDOW_SIZE']]
labeled_trough = data[segment_min_index - self.state['WINDOW_SIZE'] : segment_min_index + self.state['WINDOW_SIZE'] + 1]
labeled_trough = labeled_trough - min(labeled_trough)
auto_convolve = scipy.signal.fftconvolve(labeled_trough, labeled_trough)
first_trough = data[self.itroughs[0] - self.state['WINDOW_SIZE']: self.itroughs[0] + self.state['WINDOW_SIZE']]
first_trough = first_trough - min(first_trough)
convolve_trough = scipy.signal.fftconvolve(labeled_trough, first_trough)
convolve_list.append(max(auto_convolve))
convolve_list.append(max(convolve_trough))
patterns_list.append(labeled_trough)
self.model_trough = utils.get_av_model(patterns_list)
for n in range(len(segments)):
labeled_trough = data[self.itroughs[n] - self.state['WINDOW_SIZE']: self.itroughs[n] + self.state['WINDOW_SIZE'] + 1]
labeled_trough = labeled_trough - min(labeled_trough)
auto_convolve = scipy.signal.fftconvolve(labeled_trough, labeled_trough)
convolve_trough = scipy.signal.fftconvolve(labeled_trough, self.model_trough)
convolve_list.append(max(auto_convolve))
convolve_list.append(max(convolve_trough))
if len(confidences) > 0:
self.state['confidence'] = float(min(confidences))
@ -65,11 +73,11 @@ class TroughModel(Model):
def do_predict(self, dataframe: pd.DataFrame):
data = dataframe['value']
window_size = 24
window_size = int(len(data)/SMOOTHING_COEFF) #test ws on flat data
all_mins = argrelextrema(np.array(data), np.less)[0]
extrema_list = []
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.02):
for i in utils.exponential_smoothing(data - self.state['confidence'], EXP_SMOOTHING_FACTOR):
extrema_list.append(i)
segments = []
@ -82,8 +90,8 @@ class TroughModel(Model):
def __filter_prediction(self, segments: list, data: list) -> list:
delete_list = []
variance_error = int(0.004 * len(data))
if variance_error > 50:
variance_error = 50
if variance_error > self.state['WINDOW_SIZE']:
variance_error = self.state['WINDOW_SIZE']
for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error:
delete_list.append(segments[i])
@ -94,14 +102,13 @@ class TroughModel(Model):
if len(segments) == 0 or len(self.itroughs) == 0 :
segments = []
return segments
pattern_data = data[self.itroughs[0] - self.state['WINDOW_SIZE'] : self.itroughs[0] + self.state['WINDOW_SIZE']]
pattern_data = pattern_data - min(pattern_data)
pattern_data = self.model_peak
for segment in segments:
if segment > self.state['WINDOW_SIZE']:
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE']]
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1]
convol_data = convol_data - min(convol_data)
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.state['convolve_max'] * 1.05 or max(conv) < self.state['convolve_min'] * 0.95:
conv = scipy.signal.fftconvolve(convol_data, pattern_data)
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_min'] * 0.9:
delete_list.append(segment)
else:
delete_list.append(segment)

Loading…
Cancel
Save