Browse Source
* add stair model * add stair model method * add types * fix * add tests for get stair * fix * fix imports * add todo * fixes * get stair indexes to stair model * fixes * remove old methods * use enum * fix get_model_type * remove exception * list(set) -> utils.remove_duplicates * refactor get_stair * fixes * fixes 2 * fixes 3 * todopull/1/head
Alexander Velikiy
5 years ago
committed by
GitHub
14 changed files with 257 additions and 320 deletions
@ -1,8 +1,9 @@ |
|||||||
from models.model import Model, ModelState, AnalyticSegment |
from models.model import Model, ModelState, AnalyticSegment, ModelType, ExtremumType |
||||||
from models.triangle_model import TriangleModel, TriangleModelState |
from models.triangle_model import TriangleModel, TriangleModelState |
||||||
from models.drop_model import DropModel, DropModelState |
from models.stair_model import StairModel, StairModelState |
||||||
|
from models.drop_model import DropModel |
||||||
from models.peak_model import PeakModel |
from models.peak_model import PeakModel |
||||||
from models.jump_model import JumpModel, JumpModelState |
from models.jump_model import JumpModel |
||||||
from models.custom_model import CustomModel |
from models.custom_model import CustomModel |
||||||
from models.trough_model import TroughModel |
from models.trough_model import TroughModel |
||||||
from models.general_model import GeneralModel, GeneralModelState |
from models.general_model import GeneralModel, GeneralModelState |
||||||
|
@ -1,122 +1,9 @@ |
|||||||
from models import Model, ModelState, AnalyticSegment |
from models import StairModel, ModelType, ExtremumType |
||||||
|
|
||||||
import scipy.signal |
class DropModel(StairModel): |
||||||
from scipy.fftpack import fft |
|
||||||
from scipy.signal import argrelextrema |
|
||||||
from scipy.stats import gaussian_kde |
|
||||||
from typing import Optional, List, Tuple |
|
||||||
import utils |
|
||||||
import utils.meta |
|
||||||
import numpy as np |
|
||||||
import pandas as pd |
|
||||||
from analytic_types import AnalyticUnitId, TimeSeries |
|
||||||
from analytic_types.learning_info import LearningInfo |
|
||||||
|
|
||||||
@utils.meta.JSONClass |
def get_model_type(self) -> ModelType: |
||||||
class DropModelState(ModelState): |
return ModelType.DROP |
||||||
|
|
||||||
def __init__( |
def get_extremum_type(self) -> ExtremumType: |
||||||
self, |
return ExtremumType.MIN |
||||||
confidence: float = 0, |
|
||||||
drop_height: float = 0, |
|
||||||
drop_length: float = 0, |
|
||||||
**kwargs |
|
||||||
): |
|
||||||
super().__init__(**kwargs) |
|
||||||
self.confidence = confidence |
|
||||||
self.drop_height = drop_height |
|
||||||
self.drop_length = drop_length |
|
||||||
|
|
||||||
|
|
||||||
class DropModel(Model): |
|
||||||
|
|
||||||
def get_model_type(self) -> (str, bool): |
|
||||||
model = 'drop' |
|
||||||
type_model = False |
|
||||||
return (model, type_model) |
|
||||||
|
|
||||||
def find_segment_center(self, dataframe: pd.DataFrame, start: int, end: int) -> int: |
|
||||||
data = dataframe['value'] |
|
||||||
segment = data[start: end] |
|
||||||
segment_center_index = utils.find_pattern_center(segment, start, 'drop') |
|
||||||
return segment_center_index |
|
||||||
|
|
||||||
def get_state(self, cache: Optional[dict] = None) -> DropModelState: |
|
||||||
return DropModelState.from_json(cache) |
|
||||||
|
|
||||||
def do_fit( |
|
||||||
self, |
|
||||||
dataframe: pd.DataFrame, |
|
||||||
labeled_segments: List[AnalyticSegment], |
|
||||||
deleted_segments: List[AnalyticSegment], |
|
||||||
learning_info: LearningInfo |
|
||||||
) -> None: |
|
||||||
data = utils.cut_dataframe(dataframe) |
|
||||||
data = data['value'] |
|
||||||
window_size = self.state.window_size |
|
||||||
last_pattern_center = self.state.pattern_center |
|
||||||
self.state.pattern_center = list(set(last_pattern_center + learning_info.segment_center_list)) |
|
||||||
self.state.pattern_model = utils.get_av_model(learning_info.patterns_list) |
|
||||||
convolve_list = utils.get_convolve(self.state.pattern_center, self.state.pattern_model, data, window_size) |
|
||||||
correlation_list = utils.get_correlation(self.state.pattern_center, self.state.pattern_model, data, window_size) |
|
||||||
height_list = learning_info.patterns_value |
|
||||||
|
|
||||||
del_conv_list = [] |
|
||||||
delete_pattern_timestamp = [] |
|
||||||
for segment in deleted_segments: |
|
||||||
segment_cent_index = segment.center_index |
|
||||||
delete_pattern_timestamp.append(segment.pattern_timestamp) |
|
||||||
deleted_drop = utils.get_interval(data, segment_cent_index, window_size) |
|
||||||
deleted_drop = utils.subtract_min_without_nan(deleted_drop) |
|
||||||
del_conv_drop = scipy.signal.fftconvolve(deleted_drop, self.state.pattern_model) |
|
||||||
if len(del_conv_drop): del_conv_list.append(max(del_conv_drop)) |
|
||||||
|
|
||||||
self._update_fiting_result(self.state, learning_info.confidence, convolve_list, del_conv_list) |
|
||||||
self.state.drop_height = int(min(learning_info.pattern_height, default = 1)) |
|
||||||
self.state.drop_length = int(max(learning_info.pattern_width, default = 1)) |
|
||||||
|
|
||||||
def do_detect(self, dataframe: pd.DataFrame) -> TimeSeries: |
|
||||||
data = utils.cut_dataframe(dataframe) |
|
||||||
data = data['value'] |
|
||||||
possible_drops = utils.find_drop(data, self.state.drop_height, self.state.drop_length + 1) |
|
||||||
result = self.__filter_detection(possible_drops, data) |
|
||||||
return [(val - 1, val + 1) for val in result] |
|
||||||
|
|
||||||
def __filter_detection(self, segments: List[int], data: list): |
|
||||||
delete_list = [] |
|
||||||
variance_error = self.state.window_size |
|
||||||
close_patterns = utils.close_filtering(segments, variance_error) |
|
||||||
segments = utils.best_pattern(close_patterns, data, 'min') |
|
||||||
if len(segments) == 0 or len(self.state.pattern_center) == 0: |
|
||||||
segments = [] |
|
||||||
return segments |
|
||||||
pattern_data = self.state.pattern_model |
|
||||||
for segment in segments: |
|
||||||
if segment > self.state.window_size and segment < (len(data) - self.state.window_size): |
|
||||||
convol_data = utils.get_interval(data, segment, self.state.window_size) |
|
||||||
percent_of_nans = convol_data.isnull().sum() / len(convol_data) |
|
||||||
if len(convol_data) == 0 or percent_of_nans > 0.5: |
|
||||||
delete_list.append(segment) |
|
||||||
continue |
|
||||||
elif 0 < percent_of_nans <= 0.5: |
|
||||||
nan_list = utils.find_nan_indexes(convol_data) |
|
||||||
convol_data = utils.nan_to_zero(convol_data, nan_list) |
|
||||||
pattern_data = utils.nan_to_zero(pattern_data, nan_list) |
|
||||||
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
||||||
upper_bound = self.state.convolve_max * 1.2 |
|
||||||
lower_bound = self.state.convolve_min * 0.8 |
|
||||||
delete_up_bound = self.state.conv_del_max * 1.02 |
|
||||||
delete_low_bound = self.state.conv_del_min * 0.98 |
|
||||||
try: |
|
||||||
if max(conv) > upper_bound or max(conv) < lower_bound: |
|
||||||
delete_list.append(segment) |
|
||||||
elif max(conv) < delete_up_bound and max(conv) > delete_low_bound: |
|
||||||
delete_list.append(segment) |
|
||||||
except ValueError: |
|
||||||
delete_list.append(segment) |
|
||||||
else: |
|
||||||
delete_list.append(segment) |
|
||||||
|
|
||||||
for item in delete_list: |
|
||||||
segments.remove(item) |
|
||||||
return set(segments) |
|
||||||
|
@ -1,124 +1,9 @@ |
|||||||
from models import Model, ModelState, AnalyticSegment |
from models import StairModel, ModelType, ExtremumType |
||||||
|
|
||||||
import utils |
class JumpModel(StairModel): |
||||||
import utils.meta |
|
||||||
import numpy as np |
|
||||||
import pandas as pd |
|
||||||
import scipy.signal |
|
||||||
from scipy.fftpack import fft |
|
||||||
from typing import Optional, List, Tuple |
|
||||||
import math |
|
||||||
from scipy.signal import argrelextrema |
|
||||||
from scipy.stats import gaussian_kde |
|
||||||
from analytic_types import AnalyticUnitId, TimeSeries |
|
||||||
from analytic_types.learning_info import LearningInfo |
|
||||||
|
|
||||||
|
def get_model_type(self) -> ModelType: |
||||||
|
return ModelType.JUMP |
||||||
|
|
||||||
@utils.meta.JSONClass |
def get_extremum_type(self) -> ExtremumType: |
||||||
class JumpModelState(ModelState): |
return ExtremumType.MAX |
||||||
def __init__( |
|
||||||
self, |
|
||||||
confidence: float = 0, |
|
||||||
jump_height: float = 0, |
|
||||||
jump_length: float = 0, |
|
||||||
**kwargs |
|
||||||
): |
|
||||||
super().__init__(**kwargs) |
|
||||||
self.confidence = confidence |
|
||||||
self.jump_height = jump_height |
|
||||||
self.jump_length = jump_length |
|
||||||
|
|
||||||
|
|
||||||
class JumpModel(Model): |
|
||||||
|
|
||||||
def get_model_type(self) -> (str, bool): |
|
||||||
model = 'jump' |
|
||||||
type_model = True |
|
||||||
return (model, type_model) |
|
||||||
|
|
||||||
def find_segment_center(self, dataframe: pd.DataFrame, start: int, end: int) -> int: |
|
||||||
data = dataframe['value'] |
|
||||||
segment = data[start: end] |
|
||||||
segment_center_index = utils.find_pattern_center(segment, start, 'jump') |
|
||||||
return segment_center_index |
|
||||||
|
|
||||||
def get_state(self, cache: Optional[dict] = None) -> JumpModelState: |
|
||||||
return JumpModelState.from_json(cache) |
|
||||||
|
|
||||||
def do_fit( |
|
||||||
self, |
|
||||||
dataframe: pd.DataFrame, |
|
||||||
labeled_segments: List[AnalyticSegment], |
|
||||||
deleted_segments: List[AnalyticSegment], |
|
||||||
learning_info: LearningInfo |
|
||||||
) -> None: |
|
||||||
data = utils.cut_dataframe(dataframe) |
|
||||||
data = data['value'] |
|
||||||
window_size = self.state.window_size |
|
||||||
last_pattern_center = self.state.pattern_center |
|
||||||
self.state.pattern_center = list(set(last_pattern_center + learning_info.segment_center_list)) |
|
||||||
self.state.pattern_model = utils.get_av_model(learning_info.patterns_list) |
|
||||||
convolve_list = utils.get_convolve(self.state.pattern_center, self.state.pattern_model, data, window_size) |
|
||||||
correlation_list = utils.get_correlation(self.state.pattern_center, self.state.pattern_model, data, window_size) |
|
||||||
height_list = learning_info.patterns_value |
|
||||||
|
|
||||||
del_conv_list = [] |
|
||||||
delete_pattern_timestamp = [] |
|
||||||
for segment in deleted_segments: |
|
||||||
segment_cent_index = segment.center_index |
|
||||||
delete_pattern_timestamp.append(segment.pattern_timestamp) |
|
||||||
deleted_jump = utils.get_interval(data, segment_cent_index, window_size) |
|
||||||
deleted_jump = utils.subtract_min_without_nan(deleted_jump) |
|
||||||
del_conv_jump = scipy.signal.fftconvolve(deleted_jump, self.state.pattern_model) |
|
||||||
if len(del_conv_jump): del_conv_list.append(max(del_conv_jump)) |
|
||||||
|
|
||||||
self._update_fiting_result(self.state, learning_info.confidence, convolve_list, del_conv_list) |
|
||||||
self.state.jump_height = float(min(learning_info.pattern_height, default = 1)) |
|
||||||
self.state.jump_length = int(max(learning_info.pattern_width, default = 1)) |
|
||||||
|
|
||||||
def do_detect(self, dataframe: pd.DataFrame) -> TimeSeries: |
|
||||||
data = utils.cut_dataframe(dataframe) |
|
||||||
data = data['value'] |
|
||||||
possible_jumps = utils.find_jump(data, self.state.jump_height, self.state.jump_length + 1) |
|
||||||
result = self.__filter_detection(possible_jumps, data) |
|
||||||
return [(val - 1, val + 1) for val in result] |
|
||||||
|
|
||||||
def __filter_detection(self, segments: List[int], data: pd.Series): |
|
||||||
delete_list = [] |
|
||||||
variance_error = self.state.window_size |
|
||||||
close_patterns = utils.close_filtering(segments, variance_error) |
|
||||||
segments = utils.best_pattern(close_patterns, data, 'max') |
|
||||||
|
|
||||||
if len(segments) == 0 or len(self.state.pattern_center) == 0: |
|
||||||
segments = [] |
|
||||||
return segments |
|
||||||
pattern_data = self.state.pattern_model |
|
||||||
upper_bound = self.state.convolve_max * 1.2 |
|
||||||
lower_bound = self.state.convolve_min * 0.8 |
|
||||||
delete_up_bound = self.state.conv_del_max * 1.02 |
|
||||||
delete_low_bound = self.state.conv_del_min * 0.98 |
|
||||||
for segment in segments: |
|
||||||
if segment > self.state.window_size and segment < (len(data) - self.state.window_size): |
|
||||||
convol_data = utils.get_interval(data, segment, self.state.window_size) |
|
||||||
percent_of_nans = convol_data.isnull().sum() / len(convol_data) |
|
||||||
if len(convol_data) == 0 or percent_of_nans > 0.5: |
|
||||||
delete_list.append(segment) |
|
||||||
continue |
|
||||||
elif 0 < percent_of_nans <= 0.5: |
|
||||||
nan_list = utils.find_nan_indexes(convol_data) |
|
||||||
convol_data = utils.nan_to_zero(convol_data, nan_list) |
|
||||||
pattern_data = utils.nan_to_zero(pattern_data, nan_list) |
|
||||||
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
||||||
try: |
|
||||||
if max(conv) > upper_bound or max(conv) < lower_bound: |
|
||||||
delete_list.append(segment) |
|
||||||
elif max(conv) < delete_up_bound and max(conv) > delete_low_bound: |
|
||||||
delete_list.append(segment) |
|
||||||
except ValueError: |
|
||||||
delete_list.append(segment) |
|
||||||
else: |
|
||||||
delete_list.append(segment) |
|
||||||
for item in delete_list: |
|
||||||
segments.remove(item) |
|
||||||
|
|
||||||
return set(segments) |
|
||||||
|
@ -0,0 +1,147 @@ |
|||||||
|
from models import Model, ModelState, AnalyticSegment, ModelType |
||||||
|
|
||||||
|
from analytic_types import TimeSeries |
||||||
|
from analytic_types.learning_info import LearningInfo |
||||||
|
|
||||||
|
from scipy.fftpack import fft |
||||||
|
from typing import Optional, List |
||||||
|
from enum import Enum |
||||||
|
import scipy.signal |
||||||
|
import utils |
||||||
|
import utils.meta |
||||||
|
import pandas as pd |
||||||
|
import numpy as np |
||||||
|
import operator |
||||||
|
|
||||||
|
POSITIVE_SEGMENT_MEASUREMENT_ERROR = 0.2 |
||||||
|
NEGATIVE_SEGMENT_MEASUREMENT_ERROR = 0.02 |
||||||
|
|
||||||
|
@utils.meta.JSONClass |
||||||
|
class StairModelState(ModelState): |
||||||
|
|
||||||
|
def __init__( |
||||||
|
self, |
||||||
|
confidence: float = 0, |
||||||
|
stair_height: float = 0, |
||||||
|
stair_length: float = 0, |
||||||
|
**kwargs |
||||||
|
): |
||||||
|
super().__init__(**kwargs) |
||||||
|
self.confidence = confidence |
||||||
|
self.stair_height = stair_height |
||||||
|
self.stair_length = stair_length |
||||||
|
|
||||||
|
|
||||||
|
class StairModel(Model): |
||||||
|
|
||||||
|
def get_state(self, cache: Optional[dict] = None) -> StairModelState: |
||||||
|
return StairModelState.from_json(cache) |
||||||
|
|
||||||
|
def get_stair_indexes(self, data: pd.Series, height: float, length: int) -> List[int]: |
||||||
|
"""Get list of start stair segment indexes. |
||||||
|
|
||||||
|
Keyword arguments: |
||||||
|
data -- data, that contains stair (jump or drop) segments |
||||||
|
length -- maximum count of values in the stair |
||||||
|
height -- the difference between stair max_line and min_line(see utils.find_parameters) |
||||||
|
""" |
||||||
|
indexes = [] |
||||||
|
for i in range(len(data) - length - 1): |
||||||
|
is_stair = self.is_stair_in_segment(data.values[i:i + length + 1], height) |
||||||
|
if is_stair == True: |
||||||
|
indexes.append(i) |
||||||
|
return indexes |
||||||
|
|
||||||
|
def is_stair_in_segment(self, segment: np.ndarray, height: float) -> bool: |
||||||
|
if len(segment) < 2: |
||||||
|
return False |
||||||
|
comparison_operator = operator.ge |
||||||
|
if self.get_model_type() == ModelType.DROP: |
||||||
|
comparison_operator = operator.le |
||||||
|
height = -height |
||||||
|
return comparison_operator(max(segment[1:]), segment[0] + height) |
||||||
|
|
||||||
|
def find_segment_center(self, dataframe: pd.DataFrame, start: int, end: int) -> int: |
||||||
|
data = dataframe['value'] |
||||||
|
segment = data[start: end] |
||||||
|
segment_center_index = utils.find_pattern_center(segment, start, self.get_model_type().value) |
||||||
|
return segment_center_index |
||||||
|
|
||||||
|
def do_fit( |
||||||
|
self, |
||||||
|
dataframe: pd.DataFrame, |
||||||
|
labeled_segments: List[AnalyticSegment], |
||||||
|
deleted_segments: List[AnalyticSegment], |
||||||
|
learning_info: LearningInfo |
||||||
|
) -> None: |
||||||
|
data = utils.cut_dataframe(dataframe) |
||||||
|
data = data['value'] |
||||||
|
window_size = self.state.window_size |
||||||
|
last_pattern_center = self.state.pattern_center |
||||||
|
self.state.pattern_center = utils.remove_duplicates_and_sort(last_pattern_center + learning_info.segment_center_list) |
||||||
|
self.state.pattern_model = utils.get_av_model(learning_info.patterns_list) |
||||||
|
convolve_list = utils.get_convolve(self.state.pattern_center, self.state.pattern_model, data, window_size) |
||||||
|
correlation_list = utils.get_correlation(self.state.pattern_center, self.state.pattern_model, data, window_size) |
||||||
|
height_list = learning_info.patterns_value |
||||||
|
|
||||||
|
del_conv_list = [] |
||||||
|
delete_pattern_timestamp = [] |
||||||
|
for segment in deleted_segments: |
||||||
|
segment_cent_index = segment.center_index |
||||||
|
delete_pattern_timestamp.append(segment.pattern_timestamp) |
||||||
|
deleted_stair = utils.get_interval(data, segment_cent_index, window_size) |
||||||
|
deleted_stair = utils.subtract_min_without_nan(deleted_stair) |
||||||
|
del_conv_stair = scipy.signal.fftconvolve(deleted_stair, self.state.pattern_model) |
||||||
|
if len(del_conv_stair) > 0: |
||||||
|
del_conv_list.append(max(del_conv_stair)) |
||||||
|
|
||||||
|
self._update_fitting_result(self.state, learning_info.confidence, convolve_list, del_conv_list) |
||||||
|
self.state.stair_height = int(min(learning_info.pattern_height, default = 1)) |
||||||
|
self.state.stair_length = int(max(learning_info.pattern_width, default = 1)) |
||||||
|
|
||||||
|
def do_detect(self, dataframe: pd.DataFrame) -> TimeSeries: |
||||||
|
data = utils.cut_dataframe(dataframe) |
||||||
|
data = data['value'] |
||||||
|
possible_stairs = self.get_stair_indexes(data, self.state.stair_height, self.state.stair_length + 1) |
||||||
|
result = self.__filter_detection(possible_stairs, data) |
||||||
|
return [(val - 1, val + 1) for val in result] |
||||||
|
|
||||||
|
def __filter_detection(self, segments_indexes: List[int], data: list): |
||||||
|
delete_list = [] |
||||||
|
variance_error = self.state.window_size |
||||||
|
close_segments = utils.close_filtering(segments_indexes, variance_error) |
||||||
|
segments_indexes = utils.best_pattern(close_segments, data, self.get_extremum_type().value) |
||||||
|
if len(segments_indexes) == 0 or len(self.state.pattern_center) == 0: |
||||||
|
return [] |
||||||
|
pattern_data = self.state.pattern_model |
||||||
|
for segment_index in segments_indexes: |
||||||
|
if segment_index <= self.state.window_size or segment_index >= (len(data) - self.state.window_size): |
||||||
|
delete_list.append(segment_index) |
||||||
|
continue |
||||||
|
convol_data = utils.get_interval(data, segment_index, self.state.window_size) |
||||||
|
percent_of_nans = convol_data.isnull().sum() / len(convol_data) |
||||||
|
if len(convol_data) == 0 or percent_of_nans > 0.5: |
||||||
|
delete_list.append(segment_index) |
||||||
|
continue |
||||||
|
elif 0 < percent_of_nans <= 0.5: |
||||||
|
nan_list = utils.find_nan_indexes(convol_data) |
||||||
|
convol_data = utils.nan_to_zero(convol_data, nan_list) |
||||||
|
pattern_data = utils.nan_to_zero(pattern_data, nan_list) |
||||||
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
||||||
|
if len(conv) == 0: |
||||||
|
delete_list.append(segment_index) |
||||||
|
continue |
||||||
|
upper_bound = self.state.convolve_max * (1 + POSITIVE_SEGMENT_MEASUREMENT_ERROR) |
||||||
|
lower_bound = self.state.convolve_min * (1 - POSITIVE_SEGMENT_MEASUREMENT_ERROR) |
||||||
|
delete_up_bound = self.state.conv_del_max * (1 + NEGATIVE_SEGMENT_MEASUREMENT_ERROR) |
||||||
|
delete_low_bound = self.state.conv_del_min * (1 - NEGATIVE_SEGMENT_MEASUREMENT_ERROR) |
||||||
|
max_conv = max(conv) |
||||||
|
if max_conv > upper_bound or max_conv < lower_bound: |
||||||
|
delete_list.append(segment_index) |
||||||
|
elif max_conv < delete_up_bound and max_conv > delete_low_bound: |
||||||
|
delete_list.append(segment_index) |
||||||
|
|
||||||
|
for item in delete_list: |
||||||
|
segments_indexes.remove(item) |
||||||
|
segments_indexes = utils.remove_duplicates_and_sort(segments_indexes) |
||||||
|
return segments_indexes |
@ -0,0 +1,43 @@ |
|||||||
|
import unittest |
||||||
|
import pandas as pd |
||||||
|
import numpy as np |
||||||
|
import models |
||||||
|
|
||||||
|
class TestModel(unittest.TestCase): |
||||||
|
|
||||||
|
def test_stair_model_get_indexes(self): |
||||||
|
drop_model = models.DropModel() |
||||||
|
jump_model = models.JumpModel() |
||||||
|
drop_data = pd.Series([4, 4, 4, 1, 1, 1, 5, 5, 2, 2, 2]) |
||||||
|
jump_data = pd.Series([1, 1, 1, 4, 4, 4, 2, 2, 5, 5, 5]) |
||||||
|
jump_data_one_stair = pd.Series([1, 3, 3]) |
||||||
|
drop_data_one_stair = pd.Series([4, 2, 1]) |
||||||
|
height = 2 |
||||||
|
length = 2 |
||||||
|
expected_result = [2, 7] |
||||||
|
drop_model_result = drop_model.get_stair_indexes(drop_data, height, length) |
||||||
|
jump_model_result = jump_model.get_stair_indexes(jump_data, height, length) |
||||||
|
drop_one_stair_result = drop_model.get_stair_indexes(drop_data_one_stair, height, 1) |
||||||
|
jump_one_stair_result = jump_model.get_stair_indexes(jump_data_one_stair, height, 1) |
||||||
|
for val in expected_result: |
||||||
|
self.assertIn(val, drop_model_result) |
||||||
|
self.assertIn(val, jump_model_result) |
||||||
|
self.assertEqual(0, drop_one_stair_result[0]) |
||||||
|
self.assertEqual(0, jump_one_stair_result[0]) |
||||||
|
|
||||||
|
def test_stair_model_get_indexes_corner_cases(self): |
||||||
|
drop_model = models.DropModel() |
||||||
|
jump_model = models.JumpModel() |
||||||
|
empty_data = pd.Series([]) |
||||||
|
nan_data = pd.Series([np.nan, np.nan, np.nan, np.nan]) |
||||||
|
height, length = 2, 2 |
||||||
|
length_zero, height_zero = 0, 0 |
||||||
|
expected_result = [] |
||||||
|
drop_empty_data_result = drop_model.get_stair_indexes(empty_data, height, length) |
||||||
|
drop_nan_data_result = drop_model.get_stair_indexes(nan_data, height_zero, length_zero) |
||||||
|
jump_empty_data_result = jump_model.get_stair_indexes(empty_data, height, length) |
||||||
|
jump_nan_data_result = jump_model.get_stair_indexes(nan_data, height_zero, length_zero) |
||||||
|
self.assertEqual(drop_empty_data_result, expected_result) |
||||||
|
self.assertEqual(drop_nan_data_result, expected_result) |
||||||
|
self.assertEqual(jump_empty_data_result, expected_result) |
||||||
|
self.assertEqual(jump_nan_data_result, expected_result) |
Loading…
Reference in new issue