|
|
@ -81,9 +81,11 @@ class TestUtils(unittest.TestCase): |
|
|
|
data = [] |
|
|
|
data = [] |
|
|
|
pattern_index = [] |
|
|
|
pattern_index = [] |
|
|
|
window_size = 2 |
|
|
|
window_size = 2 |
|
|
|
|
|
|
|
window_size_zero = 0 |
|
|
|
av_model = [] |
|
|
|
av_model = [] |
|
|
|
result = [] |
|
|
|
result = [] |
|
|
|
self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result) |
|
|
|
self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result) |
|
|
|
|
|
|
|
self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size_zero), result) |
|
|
|
|
|
|
|
|
|
|
|
def test_get_distribution_density(self): |
|
|
|
def test_get_distribution_density(self): |
|
|
|
segment = [1, 1, 1, 3, 5, 5, 5] |
|
|
|
segment = [1, 1, 1, 3, 5, 5, 5] |
|
|
@ -95,39 +97,66 @@ class TestUtils(unittest.TestCase): |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
jump_center = [10, 11] |
|
|
|
jump_center = [10, 11] |
|
|
|
self.assertIn(utils.find_jump_parameters(segment, 0)[0], jump_center) |
|
|
|
self.assertIn(utils.find_parameters(segment, 0, 'jump')[0], jump_center) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_jump_parameters_height(self): |
|
|
|
def test_find_jump_parameters_height(self): |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
jump_height = [3.5, 4] |
|
|
|
jump_height = [3.5, 4] |
|
|
|
self.assertGreaterEqual(utils.find_jump_parameters(segment, 0)[1], jump_height[0]) |
|
|
|
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_height[0]) |
|
|
|
self.assertLessEqual(utils.find_jump_parameters(segment, 0)[1], jump_height[1]) |
|
|
|
self.assertLessEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_height[1]) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_jump_parameters_length(self): |
|
|
|
def test_find_jump_parameters_length(self): |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
jump_length = 2 |
|
|
|
jump_length = 2 |
|
|
|
self.assertEqual(utils.find_jump_parameters(segment, 0)[2], jump_length) |
|
|
|
self.assertEqual(utils.find_parameters(segment, 0, 'jump')[2], jump_length) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_drop_parameters_center(self): |
|
|
|
def test_find_drop_parameters_center(self): |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
drop_center = [14, 15] |
|
|
|
drop_center = [14, 15, 16] |
|
|
|
self.assertIn(utils.find_drop_parameters(segment, 0)[0], drop_center) |
|
|
|
self.assertIn(utils.find_parameters(segment, 0, 'drop')[0], drop_center) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_drop_parameters_height(self): |
|
|
|
def test_find_drop_parameters_height(self): |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
drop_height = [3.5, 4] |
|
|
|
drop_height = [3.5, 4] |
|
|
|
self.assertGreaterEqual(utils.find_drop_parameters(segment, 0)[1], drop_height[0]) |
|
|
|
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_height[0]) |
|
|
|
self.assertLessEqual(utils.find_drop_parameters(segment, 0)[1], drop_height[1]) |
|
|
|
self.assertLessEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_height[1]) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_drop_parameters_length(self): |
|
|
|
def test_find_drop_parameters_length(self): |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
drop_length = 2 |
|
|
|
drop_length = 2 |
|
|
|
self.assertEqual(utils.find_drop_parameters(segment, 0)[2], drop_length) |
|
|
|
self.assertEqual(utils.find_parameters(segment, 0, 'drop')[2], drop_length) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_get_av_model_empty_data(self): |
|
|
|
|
|
|
|
patterns_list = [] |
|
|
|
|
|
|
|
result = [] |
|
|
|
|
|
|
|
self.assertEqual(utils.get_av_model(patterns_list), result) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_find_jump_nan_data(self): |
|
|
|
|
|
|
|
data = [np.NaN, np.NaN, np.NaN, np.NaN] |
|
|
|
|
|
|
|
data = pd.Series(data) |
|
|
|
|
|
|
|
length = 2 |
|
|
|
|
|
|
|
height = 3 |
|
|
|
|
|
|
|
length_zero = 0 |
|
|
|
|
|
|
|
height_zero = 0 |
|
|
|
|
|
|
|
result = [] |
|
|
|
|
|
|
|
self.assertEqual(utils.find_jump(data, height, length), result) |
|
|
|
|
|
|
|
self.assertEqual(utils.find_jump(data, height_zero, length_zero), result) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_find_drop_nan_data(self): |
|
|
|
|
|
|
|
data = [np.NaN, np.NaN, np.NaN, np.NaN] |
|
|
|
|
|
|
|
data = pd.Series(data) |
|
|
|
|
|
|
|
length = 2 |
|
|
|
|
|
|
|
height = 3 |
|
|
|
|
|
|
|
length_zero = 0 |
|
|
|
|
|
|
|
height_zero = 0 |
|
|
|
|
|
|
|
result = [] |
|
|
|
|
|
|
|
self.assertEqual(utils.find_drop(data, height, length), result) |
|
|
|
|
|
|
|
self.assertEqual(utils.find_drop(data, height_zero, length_zero), result) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
if __name__ == '__main__': |
|
|
|
unittest.main() |
|
|
|
unittest.main() |
|
|
|