Browse Source

Improve drops algorithm

pull/1/head
rozetko 7 years ago
parent
commit
a31aed695a
  1. 42
      analytics/step_detector.py

42
analytics/step_detector.py

@ -1,5 +1,7 @@
import numpy as np import numpy as np
import pickle import pickle
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema from scipy.signal import argrelextrema
def is_intersect(target_segment, segments): def is_intersect(target_segment, segments):
@ -22,21 +24,34 @@ class StepDetector:
self.pattern = pattern self.pattern = pattern
self.segments = [] self.segments = []
self.confidence = 1.5 self.confidence = 1.5
self.convolve_max = 570000
def fit(self, dataframe, segments): def fit(self, dataframe, segments):
data = dataframe['value'] data = dataframe['value']
confidences = [] confidences = []
convolve_list = []
for segment in segments: for segment in segments:
if segment['labeled']: if segment['labeled']:
segment_data = data[segment['start'] : segment['finish'] + 1] segment_data = data[segment['start'] : segment['finish'] + 1]
segment_min = min(segment_data) segment_min = min(segment_data)
segment_max = max(segment_data) segment_max = max(segment_data)
confidences.append(0.24 * (segment_max - segment_min)) confidences.append(0.24 * (segment_max - segment_min))
flat_segment = segment_data.rolling(window=5).mean()
segment_min_index = flat_segment.idxmin() - 5
labeled_drop = data[segment_min_index - 60 : segment_min_index + 60]
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
convolve_list.append(max(convolve))
if len(confidences) > 0: if len(confidences) > 0:
self.confidence = min(confidences) self.confidence = min(confidences)
else: else:
self.confidence = 1.5 self.confidence = 1.5
if len(convolve_list) > 0:
self.convolve_max = max(convolve_list)
else:
self.convolve_max = 570000
def predict(self, dataframe): def predict(self, dataframe):
data = dataframe['value'] data = dataframe['value']
@ -66,15 +81,22 @@ class StepDetector:
def __filter_prediction(self, segments, all_max_flatten_data): def __filter_prediction(self, segments, all_max_flatten_data):
delete_list = [] delete_list = []
for i in segments: variance_error = int(0.004 * len(all_max_flatten_data))
new_data = all_max_flatten_data[i-50:i+250] if variance_error > 200:
min_value = 100 variance_error = 200
for val in new_data: for i in range(1, len(segments)):
if val < min_value: if segments[i] < segments[i - 1] + variance_error:
min_value = val delete_list.append(segments[i])
if all_max_flatten_data[i] > min_value: for item in delete_list:
delete_list.append(i) segments.remove(item)
delete_list = []
pattern_data = all_max_flatten_data[segments[0] - 60 : segments[0] + 60]
for segment in segments:
convol_data = all_max_flatten_data[segment - 60 : segment + 60]
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.convolve_max * 1.05:
delete_list.append(segment)
for item in delete_list: for item in delete_list:
segments.remove(item) segments.remove(item)
@ -82,11 +104,11 @@ class StepDetector:
def save(self, model_filename): def save(self, model_filename):
with open(model_filename, 'wb') as file: with open(model_filename, 'wb') as file:
pickle.dump((self.confidence), file) pickle.dump((self.confidence, self.convolve_max), file)
def load(self, model_filename): def load(self, model_filename):
try: try:
with open(model_filename, 'rb') as file: with open(model_filename, 'rb') as file:
self.confidence = pickle.load(file) (self.confidence, self.convolve_max) = pickle.load(file)
except: except:
pass pass

Loading…
Cancel
Save