Browse Source

add @VargBurz's jump_detector from jump_detector_v3 branch

pull/1/head
Alexey Velikiy 7 years ago
parent
commit
a0f0c40b10
  1. 54
      analytics/detectors/jump_detector.py

54
analytics/detectors/jump_detector.py

@ -26,7 +26,31 @@ class Jumpdetector:
self.segments = []
self.confidence = 1.5
self.convolve_max = 120
def intersection_segment(self, data, median):
cen_ind = []
for i in range(1, len(data)-1):
if data[i-1] < median and data[i+1] > median:
cen_ind.append(i)
del_ind = []
for i in range(1,len(cen_ind)):
if cen_ind[i] == cen_ind[i-1]+1:
del_ind.append(i - 1)
del_ind = del_ind[::-1]
for i in del_ind:
del cen_ind[i]
return cen_ind
def logistic_sigmoid(self, x , y, alpha, height):
distribution = []
for i in range(x, y):
F = 1 * height / (1 + math.exp(-i * alpha))
distribution.append(F)
return distribution
def alpha_finder(self, data, ):
# поиск альфы для логистической сигмоиды
def fit(self, dataframe, segments):
data = dataframe['value']
confidences = []
@ -37,7 +61,27 @@ class Jumpdetector:
segment_min = min(segment_data)
segment_max = max(segment_data)
confidences.append(0.20 * (segment_max - segment_min))
flat_segment = segment_data.rolling(window=5).mean() #сглаживаем сегмент
flat_segment = segment_data.rolling(window=4).mean() #сглаживаем сегмент
kde_segment = flat_data.dropna().plot.kde() # distribution density
ax = flat_data.dropna().plot.kde()
ax_list = ax.get_lines()[0].get_xydata()
mids = argrelextrema(np.array(ax_list), np.less)[0]
maxs = argrelextrema(np.array(ax_list), np.greater)[0]
min_peak = maxs[0]
max_peak = maxs[1]
min_line = ax_list[min_peak, 0]
max_line = ax_list[max_peak, 0]
sigm_heidht = max_line - min_line
pat_sigm = logistic_sigmoid(-120, 120, 1, sigm_heidht)
for i in range(0, len(pat_sigm)):
pat_sigm[i] = pat_sigm[i] + min_line
cen_ind = self.intersection_segment(flat_segment, mids[0])
c = []
for i in range(len(cen_ind)):
x = cen_ind[i]
cx = scipy.signal.fftconvolve(pat_sigm, flat_data[x-120:x+120])
c.append(cx[240])
# в идеале нужно посмотреть гистограмму сегмента и выбрать среднее значение,
# далее от него брать + -120
segment_summ = 0
@ -76,7 +120,7 @@ class Jumpdetector:
distribution.append(F)
return distribution
async def predict(self, dataframe):
def predict(self, dataframe):
data = dataframe['value']
result = self.__predict(data)
@ -91,7 +135,7 @@ class Jumpdetector:
all_max_flatten_data = data.rolling(window=window_size).mean()
extrema_list = []
# добавить все пересечения экспоненты со сглаженным графиком
#
for i in exponential_smoothing(data + self.confidence, 0.02):
extrema_list.append(i)
@ -135,4 +179,4 @@ class Jumpdetector:
with open(model_filename, 'rb') as file:
(self.confidence, self.convolve_max) = pickle.load(file)
except:
pass
pass
Loading…
Cancel
Save