|
|
|
@ -212,11 +212,7 @@ def ar_mean(numbers):
|
|
|
|
|
|
|
|
|
|
def get_av_model(patterns_list): |
|
|
|
|
x = len(patterns_list[0]) |
|
|
|
|
<<<<<<< HEAD |
|
|
|
|
if len(pattern_list) > 1 and len(patterns_list[1]) != x: |
|
|
|
|
======= |
|
|
|
|
if len(patterns_list[1]) != x: |
|
|
|
|
>>>>>>> f3e8de3d4de8748ed7c9eb1b81e2d438e04f5f38 |
|
|
|
|
raise NameError('All elements of patterns_list should have same length') |
|
|
|
|
model_pat = [] |
|
|
|
|
for i in range(x): |
|
|
|
@ -225,7 +221,6 @@ def get_av_model(patterns_list):
|
|
|
|
|
av_val.append(j.values[i]) |
|
|
|
|
model_pat.append(ar_mean(av_val)) |
|
|
|
|
return model_pat |
|
|
|
|
<<<<<<< HEAD |
|
|
|
|
|
|
|
|
|
def close_filtering(pat_list, win_size): |
|
|
|
|
s = [[pat_list[0]]] |
|
|
|
@ -255,5 +250,3 @@ def best_pat(pat_list, data, dir):
|
|
|
|
|
ind = i |
|
|
|
|
new_pat_list.append(ind) |
|
|
|
|
return new_pat_list |
|
|
|
|
======= |
|
|
|
|
>>>>>>> f3e8de3d4de8748ed7c9eb1b81e2d438e04f5f38 |
|
|
|
|