|
|
@ -37,7 +37,7 @@ class TroughModel(Model): |
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
percent_of_nans = segment_data.count(np.NaN) / len(segment_data) |
|
|
|
percent_of_nans = segment_data.isnull().sum() / len(segment_data) |
|
|
|
if percent_of_nans > 0 or len(segment_data) == 0: |
|
|
|
if percent_of_nans > 0 or len(segment_data) == 0: |
|
|
|
continue |
|
|
|
continue |
|
|
|
segment_min = min(segment_data) |
|
|
|
segment_min = min(segment_data) |
|
|
@ -64,7 +64,7 @@ class TroughModel(Model): |
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
percent_of_nans = segment_data.count(np.NaN) / len(segment_data) |
|
|
|
percent_of_nans = segment_data.isnull().sum() / len(segment_data) |
|
|
|
if percent_of_nans > 0 or len(segment_data) == 0: |
|
|
|
if percent_of_nans > 0 or len(segment_data) == 0: |
|
|
|
continue |
|
|
|
continue |
|
|
|
del_min_index = segment_data.idxmin() |
|
|
|
del_min_index = segment_data.idxmin() |
|
|
@ -127,7 +127,7 @@ class TroughModel(Model): |
|
|
|
if segment > self.state['WINDOW_SIZE']: |
|
|
|
if segment > self.state['WINDOW_SIZE']: |
|
|
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1] |
|
|
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1] |
|
|
|
convol_data = convol_data - min(convol_data) |
|
|
|
convol_data = convol_data - min(convol_data) |
|
|
|
percent_of_nans = convol_data.count(np.NaN) / len(convol_data) |
|
|
|
percent_of_nans = convol_data.isnull().sum() / len(convol_data) |
|
|
|
if percent_of_nans > 0.5: |
|
|
|
if percent_of_nans > 0.5: |
|
|
|
delete_list.append(segment) |
|
|
|
delete_list.append(segment) |
|
|
|
continue |
|
|
|
continue |
|
|
|