|
|
|
@ -6,61 +6,68 @@ import scipy.signal
|
|
|
|
|
from scipy.fftpack import fft |
|
|
|
|
from scipy.signal import argrelextrema |
|
|
|
|
import math |
|
|
|
|
from scipy.stats import gaussian_kde |
|
|
|
|
from scipy.stats import norm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WINDOW_SIZE = 120 |
|
|
|
|
WINDOW_SIZE = 240 |
|
|
|
|
|
|
|
|
|
class JumpModel(Model): |
|
|
|
|
|
|
|
|
|
def __init__(self): |
|
|
|
|
super() |
|
|
|
|
self.segments = [] |
|
|
|
|
self.ijumps = [] |
|
|
|
|
self.state = { |
|
|
|
|
'confidence': 1.5, |
|
|
|
|
'convolve_max': WINDOW_SIZE |
|
|
|
|
'convolve_max': WINDOW_SIZE, |
|
|
|
|
'JUMP_HEIGHT': 1, |
|
|
|
|
'JUMP_LENGTH': 1, |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
def fit(self, dataframe, segments): |
|
|
|
|
self.segments = segments |
|
|
|
|
#self.alpha_finder() |
|
|
|
|
data = dataframe['value'] |
|
|
|
|
confidences = [] |
|
|
|
|
convolve_list = [] |
|
|
|
|
jump_height_list = [] |
|
|
|
|
jump_length_list = [] |
|
|
|
|
for segment in segments: |
|
|
|
|
if segment['labeled']: |
|
|
|
|
segment_data = data[segment['start'] : segment['finish'] + 1] |
|
|
|
|
segment_data = data[segment['start'] : segment['finish'] + 1].reset_index(drop=True) |
|
|
|
|
segment_min = min(segment_data) |
|
|
|
|
segment_max = max(segment_data) |
|
|
|
|
confidences.append(0.20 * (segment_max - segment_min)) |
|
|
|
|
flat_segment = segment_data.rolling(window=4).mean() #сглаживаем сегмент |
|
|
|
|
kde_segment = flat_data.dropna().plot.kde() # distribution density |
|
|
|
|
ax_list = kde_segment.get_lines()[0].get_xydata() #take coordinates of kde |
|
|
|
|
mids = argrelextrema(np.array(ax_list), np.less)[0] |
|
|
|
|
maxs = argrelextrema(np.array(ax_list), np.greater)[0] |
|
|
|
|
min_peak = maxs[0] |
|
|
|
|
max_peak = maxs[1] |
|
|
|
|
min_line = ax_list[min_peak, 0] |
|
|
|
|
max_line = ax_list[max_peak, 0] |
|
|
|
|
sigm_heidht = max_line - min_line |
|
|
|
|
pat_sigm = utils.logistic_sigmoid(-WINDOW_SIZE, WINDOW_SIZE, 1, sigm_heidht) |
|
|
|
|
for i in range(0, len(pat_sigm)): |
|
|
|
|
pat_sigm[i] = pat_sigm[i] + min_line |
|
|
|
|
cen_ind = utils.intersection_segment(flat_segment, mids[0]) #finds all interseprions with median |
|
|
|
|
c = [] # choose the correct one interseption by convolve |
|
|
|
|
jump_center = utils.find_jump_center(cen_ind) |
|
|
|
|
|
|
|
|
|
segment_cent_index = jump_center - 4 |
|
|
|
|
flat_segment = segment_data.rolling(window=5).mean() |
|
|
|
|
pdf = gaussian_kde(flat_segment.dropna()) |
|
|
|
|
x = np.linspace(flat_segment.dropna().min() - 1, flat_segment.dropna().max() + 1, len(flat_segment.dropna())) |
|
|
|
|
y = pdf(x) |
|
|
|
|
ax_list = [] |
|
|
|
|
for i in range(len(x)): |
|
|
|
|
ax_list.append([x[i], y[i]]) |
|
|
|
|
ax_list = np.array(ax_list, np.float32) |
|
|
|
|
antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0] |
|
|
|
|
peaks_kde = argrelextrema(np.array(ax_list), np.greater)[0] |
|
|
|
|
min_peak_index = peaks_kde[0] |
|
|
|
|
max_peak_index = peaks_kde[1] |
|
|
|
|
segment_median = ax_list[antipeaks_kde[0], 0] |
|
|
|
|
segment_min_line = ax_list[min_peak_index, 0] |
|
|
|
|
segment_max_line = ax_list[max_peak_index, 0] |
|
|
|
|
jump_height = 0.9 * (segment_max_line - segment_min_line) |
|
|
|
|
jump_height_list.append(jump_height) |
|
|
|
|
jump_lenght = utils.find_jump_length(segment_data, segment_min_line, segment_max_line) |
|
|
|
|
jump_length_list.append(jump_lenght) |
|
|
|
|
cen_ind = utils.intersection_segment(flat_segment, segment_median) #finds all interseprions with median |
|
|
|
|
#cen_ind = utils.find_ind_median(segment_median, flat_segment) |
|
|
|
|
jump_center = cen_ind[0] |
|
|
|
|
segment_cent_index = jump_center - 5 + segment['start'] |
|
|
|
|
self.ijumps.append(segment_cent_index) |
|
|
|
|
labeled_drop = data[segment_cent_index - WINDOW_SIZE : segment_cent_index + WINDOW_SIZE] |
|
|
|
|
labeled_min = min(labeled_drop) |
|
|
|
|
for value in labeled_drop: # обрезаем |
|
|
|
|
for value in labeled_drop: |
|
|
|
|
value = value - labeled_min |
|
|
|
|
labeled_max = max(labeled_drop) |
|
|
|
|
for value in labeled_drop: # нормируем |
|
|
|
|
value = value / labeled_max |
|
|
|
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
|
|
|
|
convolve_list.append(max(convolve)) # сворачиваем паттерн |
|
|
|
|
# TODO: add convolve with alpha sigmoid |
|
|
|
|
# TODO: add size of jump rize |
|
|
|
|
|
|
|
|
|
convolve_list.append(max(convolve)) |
|
|
|
|
|
|
|
|
|
if len(confidences) > 0: |
|
|
|
|
self.state['confidence'] = min(confidences) |
|
|
|
@ -70,14 +77,23 @@ class JumpModel(Model):
|
|
|
|
|
if len(convolve_list) > 0: |
|
|
|
|
self.state['convolve_max'] = max(convolve_list) |
|
|
|
|
else: |
|
|
|
|
self.state['convolve_max'] = WINDOW_SIZE # макс метрика свертки равна отступу(WINDOW_SIZE), вау! |
|
|
|
|
self.state['convolve_max'] = WINDOW_SIZE |
|
|
|
|
|
|
|
|
|
if len(jump_height_list) > 0: |
|
|
|
|
self.state['JUMP_HEIGHT'] = min(jump_height_list) |
|
|
|
|
else: |
|
|
|
|
self.state['JUMP_HEIGHT'] = 1 |
|
|
|
|
|
|
|
|
|
if len(jump_length_list) > 0: |
|
|
|
|
self.state['JUMP_LENGTH'] = max(jump_length_list) |
|
|
|
|
else: |
|
|
|
|
self.state['JUMP_LENGTH'] = 1 |
|
|
|
|
|
|
|
|
|
def predict(self, dataframe): |
|
|
|
|
data = dataframe['value'] |
|
|
|
|
|
|
|
|
|
result = self.__predict(data) |
|
|
|
|
result.sort() |
|
|
|
|
|
|
|
|
|
if len(self.segments) > 0: |
|
|
|
|
result = [segment for segment in result if not utils.is_intersect(segment, self.segments)] |
|
|
|
|
return result |
|
|
|
@ -86,50 +102,38 @@ class JumpModel(Model):
|
|
|
|
|
window_size = 24 |
|
|
|
|
all_max_flatten_data = data.rolling(window=window_size).mean() |
|
|
|
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0] |
|
|
|
|
possible_jumps = utils.find_all_jumps(all_max_flatten_data, 50, self.state['confidence']) |
|
|
|
|
|
|
|
|
|
''' |
|
|
|
|
for i in utils.exponential_smoothing(data + self.state['confidence'], 0.02): |
|
|
|
|
extrema_list.append(i) |
|
|
|
|
|
|
|
|
|
segments = [] |
|
|
|
|
for i in all_mins: |
|
|
|
|
if all_max_flatten_data[i] > extrema_list[i]: |
|
|
|
|
segments.append(i - window_size) |
|
|
|
|
''' |
|
|
|
|
possible_jumps = utils.find_jump(data, self.state['JUMP_HEIGHT'], self.state['JUMP_LENGTH'] + 1) |
|
|
|
|
|
|
|
|
|
return [(x - 1, x + 1) for x in self.__filter_prediction(possible_jumps, all_max_flatten_data)] |
|
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments, all_max_flatten_data): |
|
|
|
|
delete_list = [] |
|
|
|
|
variance_error = int(0.004 * len(all_max_flatten_data)) |
|
|
|
|
if variance_error > 200: |
|
|
|
|
variance_error = 200 |
|
|
|
|
if variance_error > 50: |
|
|
|
|
variance_error = 50 |
|
|
|
|
for i in range(1, len(segments)): |
|
|
|
|
if segments[i] < segments[i - 1] + variance_error: |
|
|
|
|
delete_list.append(segments[i]) |
|
|
|
|
for item in delete_list: |
|
|
|
|
segments.remove(item) |
|
|
|
|
|
|
|
|
|
# изменить секонд делит лист, сделать для свертки с сигмоидой |
|
|
|
|
# !!!!!!!! |
|
|
|
|
# написать фильтрацию паттернов-джампов! посмотерть каждый сегмент, обрезать его |
|
|
|
|
# отнормировать, сравнить с выбранным патерном. |
|
|
|
|
# !!!!!!!! |
|
|
|
|
delete_list = [] |
|
|
|
|
pattern_data = all_max_flatten_data[segments[0] - WINDOW_SIZE : segments[0] + WINDOW_SIZE] |
|
|
|
|
if len(segments) == 0 or len(self.ijumps) == 0 : |
|
|
|
|
segments = [] |
|
|
|
|
return segments |
|
|
|
|
pattern_data = all_max_flatten_data[self.ijumps[0] - WINDOW_SIZE : self.ijumps[0] + WINDOW_SIZE] |
|
|
|
|
for segment in segments: |
|
|
|
|
if segment > WINDOW_SIZE: |
|
|
|
|
convol_data = all_max_flatten_data[segment - WINDOW_SIZE : segment + WINDOW_SIZE] |
|
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
|
|
|
|
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_max'] * 0.9: |
|
|
|
|
if max(conv) > self.state['convolve_max'] * 1.2 or max(conv) < self.state['convolve_max'] * 0.8: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|
else: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|
for item in delete_list: |
|
|
|
|
segments.remove(item) |
|
|
|
|
|
|
|
|
|
return segments |
|
|
|
|
for ijump in self.ijumps: |
|
|
|
|
segments.append(ijump) |
|
|
|
|
|
|
|
|
|
def alpha_finder(self, data): |
|
|
|
|
""" |
|
|
|
|
поиск альфы для логистической сигмоиды |
|
|
|
|
""" |
|
|
|
|
pass |
|
|
|
|
return segments |