Browse Source

WIP: Jump model v8 (#115)

* new jump model with height

* antipeak

* universal n/w jumps
pull/1/head
Alexandr Velikiy 6 years ago committed by Alexey Velikiy
parent
commit
922f1f3d11
  1. 120
      analytics/models/jump_model.py
  2. 67
      analytics/models/step_model.py
  3. 48
      analytics/utils/__init__.py

120
analytics/models/jump_model.py

@ -6,61 +6,68 @@ import scipy.signal
from scipy.fftpack import fft from scipy.fftpack import fft
from scipy.signal import argrelextrema from scipy.signal import argrelextrema
import math import math
from scipy.stats import gaussian_kde
from scipy.stats import norm
WINDOW_SIZE = 120 WINDOW_SIZE = 240
class JumpModel(Model): class JumpModel(Model):
def __init__(self): def __init__(self):
super() super()
self.segments = []
self.ijumps = []
self.state = { self.state = {
'confidence': 1.5, 'confidence': 1.5,
'convolve_max': WINDOW_SIZE 'convolve_max': WINDOW_SIZE,
'JUMP_HEIGHT': 1,
'JUMP_LENGTH': 1,
} }
def fit(self, dataframe, segments): def fit(self, dataframe, segments):
self.segments = segments self.segments = segments
#self.alpha_finder()
data = dataframe['value'] data = dataframe['value']
confidences = [] confidences = []
convolve_list = [] convolve_list = []
jump_height_list = []
jump_length_list = []
for segment in segments: for segment in segments:
if segment['labeled']: if segment['labeled']:
segment_data = data[segment['start'] : segment['finish'] + 1] segment_data = data[segment['start'] : segment['finish'] + 1].reset_index(drop=True)
segment_min = min(segment_data) segment_min = min(segment_data)
segment_max = max(segment_data) segment_max = max(segment_data)
confidences.append(0.20 * (segment_max - segment_min)) confidences.append(0.20 * (segment_max - segment_min))
flat_segment = segment_data.rolling(window=4).mean() #сглаживаем сегмент flat_segment = segment_data.rolling(window=5).mean()
kde_segment = flat_data.dropna().plot.kde() # distribution density pdf = gaussian_kde(flat_segment.dropna())
ax_list = kde_segment.get_lines()[0].get_xydata() #take coordinates of kde x = np.linspace(flat_segment.dropna().min() - 1, flat_segment.dropna().max() + 1, len(flat_segment.dropna()))
mids = argrelextrema(np.array(ax_list), np.less)[0] y = pdf(x)
maxs = argrelextrema(np.array(ax_list), np.greater)[0] ax_list = []
min_peak = maxs[0] for i in range(len(x)):
max_peak = maxs[1] ax_list.append([x[i], y[i]])
min_line = ax_list[min_peak, 0] ax_list = np.array(ax_list, np.float32)
max_line = ax_list[max_peak, 0] antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0]
sigm_heidht = max_line - min_line peaks_kde = argrelextrema(np.array(ax_list), np.greater)[0]
pat_sigm = utils.logistic_sigmoid(-WINDOW_SIZE, WINDOW_SIZE, 1, sigm_heidht) min_peak_index = peaks_kde[0]
for i in range(0, len(pat_sigm)): max_peak_index = peaks_kde[1]
pat_sigm[i] = pat_sigm[i] + min_line segment_median = ax_list[antipeaks_kde[0], 0]
cen_ind = utils.intersection_segment(flat_segment, mids[0]) #finds all interseprions with median segment_min_line = ax_list[min_peak_index, 0]
c = [] # choose the correct one interseption by convolve segment_max_line = ax_list[max_peak_index, 0]
jump_center = utils.find_jump_center(cen_ind) jump_height = 0.9 * (segment_max_line - segment_min_line)
jump_height_list.append(jump_height)
segment_cent_index = jump_center - 4 jump_lenght = utils.find_jump_length(segment_data, segment_min_line, segment_max_line)
jump_length_list.append(jump_lenght)
cen_ind = utils.intersection_segment(flat_segment, segment_median) #finds all interseprions with median
#cen_ind = utils.find_ind_median(segment_median, flat_segment)
jump_center = cen_ind[0]
segment_cent_index = jump_center - 5 + segment['start']
self.ijumps.append(segment_cent_index)
labeled_drop = data[segment_cent_index - WINDOW_SIZE : segment_cent_index + WINDOW_SIZE] labeled_drop = data[segment_cent_index - WINDOW_SIZE : segment_cent_index + WINDOW_SIZE]
labeled_min = min(labeled_drop) labeled_min = min(labeled_drop)
for value in labeled_drop: # обрезаем for value in labeled_drop:
value = value - labeled_min value = value - labeled_min
labeled_max = max(labeled_drop)
for value in labeled_drop: # нормируем
value = value / labeled_max
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
convolve_list.append(max(convolve)) # сворачиваем паттерн convolve_list.append(max(convolve))
# TODO: add convolve with alpha sigmoid
# TODO: add size of jump rize
if len(confidences) > 0: if len(confidences) > 0:
self.state['confidence'] = min(confidences) self.state['confidence'] = min(confidences)
@ -70,14 +77,23 @@ class JumpModel(Model):
if len(convolve_list) > 0: if len(convolve_list) > 0:
self.state['convolve_max'] = max(convolve_list) self.state['convolve_max'] = max(convolve_list)
else: else:
self.state['convolve_max'] = WINDOW_SIZE # макс метрика свертки равна отступу(WINDOW_SIZE), вау! self.state['convolve_max'] = WINDOW_SIZE
if len(jump_height_list) > 0:
self.state['JUMP_HEIGHT'] = min(jump_height_list)
else:
self.state['JUMP_HEIGHT'] = 1
if len(jump_length_list) > 0:
self.state['JUMP_LENGTH'] = max(jump_length_list)
else:
self.state['JUMP_LENGTH'] = 1
def predict(self, dataframe): def predict(self, dataframe):
data = dataframe['value'] data = dataframe['value']
result = self.__predict(data) result = self.__predict(data)
result.sort() result.sort()
if len(self.segments) > 0: if len(self.segments) > 0:
result = [segment for segment in result if not utils.is_intersect(segment, self.segments)] result = [segment for segment in result if not utils.is_intersect(segment, self.segments)]
return result return result
@ -86,50 +102,38 @@ class JumpModel(Model):
window_size = 24 window_size = 24
all_max_flatten_data = data.rolling(window=window_size).mean() all_max_flatten_data = data.rolling(window=window_size).mean()
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0] all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
possible_jumps = utils.find_all_jumps(all_max_flatten_data, 50, self.state['confidence'])
''' possible_jumps = utils.find_jump(data, self.state['JUMP_HEIGHT'], self.state['JUMP_LENGTH'] + 1)
for i in utils.exponential_smoothing(data + self.state['confidence'], 0.02):
extrema_list.append(i)
segments = []
for i in all_mins:
if all_max_flatten_data[i] > extrema_list[i]:
segments.append(i - window_size)
'''
return [(x - 1, x + 1) for x in self.__filter_prediction(possible_jumps, all_max_flatten_data)] return [(x - 1, x + 1) for x in self.__filter_prediction(possible_jumps, all_max_flatten_data)]
def __filter_prediction(self, segments, all_max_flatten_data): def __filter_prediction(self, segments, all_max_flatten_data):
delete_list = [] delete_list = []
variance_error = int(0.004 * len(all_max_flatten_data)) variance_error = int(0.004 * len(all_max_flatten_data))
if variance_error > 200: if variance_error > 50:
variance_error = 200 variance_error = 50
for i in range(1, len(segments)): for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error: if segments[i] < segments[i - 1] + variance_error:
delete_list.append(segments[i]) delete_list.append(segments[i])
for item in delete_list: for item in delete_list:
segments.remove(item) segments.remove(item)
# изменить секонд делит лист, сделать для свертки с сигмоидой
# !!!!!!!!
# написать фильтрацию паттернов-джампов! посмотерть каждый сегмент, обрезать его
# отнормировать, сравнить с выбранным патерном.
# !!!!!!!!
delete_list = [] delete_list = []
pattern_data = all_max_flatten_data[segments[0] - WINDOW_SIZE : segments[0] + WINDOW_SIZE] if len(segments) == 0 or len(self.ijumps) == 0 :
segments = []
return segments
pattern_data = all_max_flatten_data[self.ijumps[0] - WINDOW_SIZE : self.ijumps[0] + WINDOW_SIZE]
for segment in segments: for segment in segments:
if segment > WINDOW_SIZE:
convol_data = all_max_flatten_data[segment - WINDOW_SIZE : segment + WINDOW_SIZE] convol_data = all_max_flatten_data[segment - WINDOW_SIZE : segment + WINDOW_SIZE]
conv = scipy.signal.fftconvolve(pattern_data, convol_data) conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_max'] * 0.9: if max(conv) > self.state['convolve_max'] * 1.2 or max(conv) < self.state['convolve_max'] * 0.8:
delete_list.append(segment)
else:
delete_list.append(segment) delete_list.append(segment)
for item in delete_list: for item in delete_list:
segments.remove(item) segments.remove(item)
return segments for ijump in self.ijumps:
segments.append(ijump)
def alpha_finder(self, data): return segments
"""
поиск альфы для логистической сигмоиды
"""
pass

67
analytics/models/step_model.py

@ -10,10 +10,10 @@ import pickle
class StepModel(Model): class StepModel(Model):
def __init__(self): def __init__(self):
super() super()
self.segments = [] self.segments = []
self.idrops = []
self.state = { self.state = {
'confidence': 1.5, 'confidence': 1.5,
'convolve_max': 570000 'convolve_max': 570000
@ -21,19 +21,26 @@ class StepModel(Model):
def fit(self, dataframe, segments): def fit(self, dataframe, segments):
self.segments = segments self.segments = segments
#dataframe = dataframe.iloc[::-1]
d_min = min(dataframe['value'])
for i in range(0,len(dataframe['value'])):
dataframe.loc[i, 'value'] = dataframe.loc[i, 'value'] - d_min
data = dataframe['value'] data = dataframe['value']
new_data = []
for val in data:
new_data.append(val)
confidences = [] confidences = []
convolve_list = [] convolve_list = []
for segment in segments: for segment in segments:
if segment['labeled']: if segment['labeled']:
segment_data = data[segment['start'] : segment['finish'] + 1] segment_data = new_data[segment['start'] : segment['finish'] + 1]
segment_min = min(segment_data) segment_min = min(segment_data)
segment_max = max(segment_data) segment_max = max(segment_data)
confidences.append(0.20 * (segment_max - segment_min)) confidences.append( 0.4*(segment_max - segment_min))
flat_segment = segment_data.rolling(window=5).mean() flat_segment = segment_data #.rolling(window=5).mean()
segment_min_index = flat_segment.index(min(flat_segment)) - 5 + segment['start']
segment_min_index = flat_segment.idxmin() - 5 self.idrops.append(segment_min_index)
labeled_drop = data[segment_min_index - 120 : segment_min_index + 120] labeled_drop = new_data[segment_min_index - 240 : segment_min_index + 240]
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
convolve_list.append(max(convolve)) convolve_list.append(max(convolve))
@ -47,7 +54,13 @@ class StepModel(Model):
else: else:
self.state['convolve_max'] = 570000 self.state['convolve_max'] = 570000
def predict(self, dataframe):
async def predict(self, dataframe):
#dataframe = dataframe.iloc[::-1]
d_min = min(dataframe['value'])
for i in range(0,len(dataframe['value'])):
dataframe.loc[i, 'value'] = dataframe.loc[i, 'value'] - d_min
data = dataframe['value'] data = dataframe['value']
result = self.__predict(data) result = self.__predict(data)
@ -60,24 +73,30 @@ class StepModel(Model):
def __predict(self, data): def __predict(self, data):
window_size = 24 window_size = 24
all_max_flatten_data = data.rolling(window=window_size).mean() all_max_flatten_data = data.rolling(window=window_size).mean()
new_flat_data = []
for val in all_max_flatten_data:
new_flat_data.append(val)
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0] all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
extrema_list = []
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.03): extrema_list = []
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.01):
extrema_list.append(i) extrema_list.append(i)
#extrema_list = extrema_list[::-1]
segments = [] segments = []
for i in all_mins: for i in all_mins:
if all_max_flatten_data[i] < extrema_list[i]: if new_flat_data[i] < extrema_list[i]:
segments.append(i - window_size) segments.append(i) #-window_size
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)] return [(x - 1, x + 1) for x in self.__filter_prediction(segments, new_flat_data)]
def __filter_prediction(self, segments, all_max_flatten_data): def __filter_prediction(self, segments, new_flat_data):
delete_list = [] delete_list = []
variance_error = int(0.004 * len(all_max_flatten_data)) variance_error = int(0.004 * len(new_flat_data))
if variance_error > 200: if variance_error > 100:
variance_error = 200 variance_error = 100
for i in range(1, len(segments)): for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error: if segments[i] < segments[i - 1] + variance_error:
delete_list.append(segments[i]) delete_list.append(segments[i])
@ -85,11 +104,19 @@ class StepModel(Model):
segments.remove(item) segments.remove(item)
delete_list = [] delete_list = []
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120] print(self.idrops[0])
pattern_data = new_flat_data[self.idrops[0] - 240 : self.idrops[0] + 240]
print(self.state['convolve_max'])
for segment in segments: for segment in segments:
convol_data = all_max_flatten_data[segment - 120 : segment + 120] if segment > 240:
convol_data = new_flat_data[segment - 240 : segment + 240]
conv = scipy.signal.fftconvolve(pattern_data, convol_data) conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_max'] * 0.9: if conv[480] > self.state['convolve_max'] * 1.2 or conv[480] < self.state['convolve_max'] * 0.9:
delete_list.append(segment)
print(segment, conv[480], 0)
else:
print(segment, conv[480], 1)
else:
delete_list.append(segment) delete_list.append(segment)
for item in delete_list: for item in delete_list:
segments.remove(item) segments.remove(item)

48
analytics/utils/__init__.py

@ -81,6 +81,13 @@ def logistic_sigmoid_distribution(self, x1, x2, alpha, height):
def logistic_sigmoid(x, alpha, height): def logistic_sigmoid(x, alpha, height):
return height / (1 + math.exp(-x * alpha)) return height / (1 + math.exp(-x * alpha))
def MyLogisticSigmoid(interval, alpha, heigh):
distribution = []
for i in range(-interval, interval):
F = height / (1 + math.exp(-i * alpha))
distribution.append(F)
return distribution
def find_one_jump(data, x, size, height, err): def find_one_jump(data, x, size, height, err):
l = [] l = []
for i in range(x + 1, x + size): for i in range(x + 1, x + size):
@ -108,3 +115,44 @@ def find_jump_center(cen_ind):
if i > 0 and cx > c[i - 1]: if i > 0 and cx > c[i - 1]:
jump_center = x jump_center = x
return jump_center return jump_center
def find_ind_median(median, segment_data):
x = np.arange(0, len(segment_data))
f = []
for i in range(len(segment_data)):
f.append(median)
f = np.array(f)
g = []
for i in segment_data:
g.append(i)
g = np.array(g)
idx = np.argwhere(np.diff(np.sign(f - g)) != 0).reshape(-1) + 0
return idx
def find_jump_length(segment_data, min_line, max_line):
x = np.arange(0, len(segment_data))
f = []
l = []
for i in range(len(segment_data)):
f.append(min_line)
l.append(max_line)
f = np.array(f)
l = np.array(l)
g = []
for i in segment_data:
g.append(i)
g = np.array(g)
idx = np.argwhere(np.diff(np.sign(f - g)) != 0).reshape(-1) + 0
idl = np.argwhere(np.diff(np.sign(l - g)) != 0).reshape(-1) + 0
if (idl[0] - idx[-1] + 1) > 0:
return idl[0] - idx[-1] + 1
else:
return print("retard alert!")
def find_jump(data, height, lenght):
j_list = []
for i in range(len(data)-lenght-1):
for x in range(1, lenght):
if(data[i+x] > data[i] + height):
j_list.append(i)
return(j_list)

Loading…
Cancel
Save