|
|
|
@ -11,12 +11,14 @@ from models import ModelCache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = log.getLogger('AnalyticUnitManager') |
|
|
|
|
WORKERS_EXECUTORS = 20 |
|
|
|
|
WORKERS_EXECUTORS = 2 |
|
|
|
|
|
|
|
|
|
AnalyticUnitId = str |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_detector_by_type(detector_type: str, analytic_unit_type: str, analytic_unit_id: AnalyticUnitId) -> detectors.Detector: |
|
|
|
|
def get_detector_by_type( |
|
|
|
|
detector_type: str, analytic_unit_type: str, analytic_unit_id: AnalyticUnitId |
|
|
|
|
) -> detectors.Detector: |
|
|
|
|
if detector_type == 'pattern': |
|
|
|
|
return detectors.PatternDetector(analytic_unit_type, analytic_unit_id) |
|
|
|
|
elif detector_type == 'threshold': |
|
|
|
@ -24,12 +26,12 @@ def get_detector_by_type(detector_type: str, analytic_unit_type: str, analytic_u
|
|
|
|
|
|
|
|
|
|
raise ValueError('Unknown detector type "%s"' % detector_type) |
|
|
|
|
|
|
|
|
|
def prepare_data(data: list): |
|
|
|
|
def prepare_data(data: list) -> pd.DataFrame: |
|
|
|
|
""" |
|
|
|
|
Takes list |
|
|
|
|
- converts it into pd.DataFrame, |
|
|
|
|
- converts 'timestamp' column to pd.Datetime, |
|
|
|
|
- subtracts min value from dataset |
|
|
|
|
- subtracts min value from the dataset |
|
|
|
|
""" |
|
|
|
|
data = pd.DataFrame(data, columns=['timestamp', 'value']) |
|
|
|
|
data['timestamp'] = pd.to_datetime(data['timestamp'], unit='ms') |
|
|
|
|