|
|
@ -8,6 +8,7 @@ from scipy.stats.stats import pearsonr |
|
|
|
import math |
|
|
|
import math |
|
|
|
from typing import Union |
|
|
|
from typing import Union |
|
|
|
import utils |
|
|
|
import utils |
|
|
|
|
|
|
|
import logging |
|
|
|
|
|
|
|
|
|
|
|
SHIFT_FACTOR = 0.05 |
|
|
|
SHIFT_FACTOR = 0.05 |
|
|
|
CONFIDENCE_FACTOR = 0.2 |
|
|
|
CONFIDENCE_FACTOR = 0.2 |
|
|
@ -64,10 +65,12 @@ def find_drop(data, height, length): |
|
|
|
|
|
|
|
|
|
|
|
def timestamp_to_index(dataframe, timestamp): |
|
|
|
def timestamp_to_index(dataframe, timestamp): |
|
|
|
data = dataframe['timestamp'] |
|
|
|
data = dataframe['timestamp'] |
|
|
|
|
|
|
|
idx, = np.where(data >= timestamp) |
|
|
|
for i in range(len(data)): |
|
|
|
if len(idx) > 0: |
|
|
|
if data[i] >= timestamp: |
|
|
|
time_ind = int(idx[0]) |
|
|
|
return i |
|
|
|
else: |
|
|
|
|
|
|
|
raise ValueError('Dataframe has no appropriate timestamp {}'.format(timestamp)) |
|
|
|
|
|
|
|
return time_ind |
|
|
|
|
|
|
|
|
|
|
|
def peak_finder(data, size): |
|
|
|
def peak_finder(data, size): |
|
|
|
all_max = [] |
|
|
|
all_max = [] |
|
|
@ -186,6 +189,9 @@ def find_extremum_index(segment: np.ndarray, selector: bool) -> int: |
|
|
|
return segment.argmin() |
|
|
|
return segment.argmin() |
|
|
|
|
|
|
|
|
|
|
|
def get_interval(data: pd.Series, center: int, window_size: int) -> pd.Series: |
|
|
|
def get_interval(data: pd.Series, center: int, window_size: int) -> pd.Series: |
|
|
|
|
|
|
|
if center >= len(data): |
|
|
|
|
|
|
|
logging.warning('Pattern center {} is out of data with len {}'.format(center, len(data))) |
|
|
|
|
|
|
|
return [] |
|
|
|
left_bound = center - window_size |
|
|
|
left_bound = center - window_size |
|
|
|
right_bound = center + window_size + 1 |
|
|
|
right_bound = center + window_size + 1 |
|
|
|
if left_bound < 0: |
|
|
|
if left_bound < 0: |
|
|
@ -227,7 +233,10 @@ def get_correlation(segments: list, av_model: list, data: pd.Series, window_size |
|
|
|
labeled_segment = utils.get_interval(data, segment, window_size) |
|
|
|
labeled_segment = utils.get_interval(data, segment, window_size) |
|
|
|
labeled_segment = utils.subtract_min_without_nan(labeled_segment) |
|
|
|
labeled_segment = utils.subtract_min_without_nan(labeled_segment) |
|
|
|
labeled_segment = utils.check_nan_values(labeled_segment) |
|
|
|
labeled_segment = utils.check_nan_values(labeled_segment) |
|
|
|
|
|
|
|
if len(labeled_segment) == 0 or len(labeled_segment) != len(av_model): |
|
|
|
|
|
|
|
continue |
|
|
|
correlation = pearsonr(labeled_segment, av_model) |
|
|
|
correlation = pearsonr(labeled_segment, av_model) |
|
|
|
|
|
|
|
if len(correlation) > 1: |
|
|
|
correlation_list.append(correlation[0]) |
|
|
|
correlation_list.append(correlation[0]) |
|
|
|
p_value_list.append(correlation[1]) |
|
|
|
p_value_list.append(correlation[1]) |
|
|
|
return correlation_list |
|
|
|
return correlation_list |
|
|
|