|
|
|
@ -24,6 +24,8 @@ class JumpModel(Model):
|
|
|
|
|
'JUMP_HEIGHT': 1, |
|
|
|
|
'JUMP_LENGTH': 1, |
|
|
|
|
'WINDOW_SIZE': 240, |
|
|
|
|
'conv_del_min': 54000, |
|
|
|
|
'conv_del_max': 55000, |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None: |
|
|
|
@ -40,7 +42,6 @@ class JumpModel(Model):
|
|
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
|
if len(segment_data) == 0: |
|
|
|
|
continue |
|
|
|
|
|
|
|
|
|
segment_min = min(segment_data) |
|
|
|
|
segment_max = max(segment_data) |
|
|
|
|
confidences.append(0.20 * (segment_max - segment_min)) |
|
|
|
@ -81,6 +82,33 @@ class JumpModel(Model):
|
|
|
|
|
convolve_list.append(max(auto_convolve)) |
|
|
|
|
convolve_list.append(max(convolve_jump)) |
|
|
|
|
|
|
|
|
|
del_conv_list = [] |
|
|
|
|
for segment in segments: |
|
|
|
|
if segment['deleted']: |
|
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
|
if len(segment_data) == 0: |
|
|
|
|
continue |
|
|
|
|
flat_segment = segment_data.rolling(window = 5).mean() |
|
|
|
|
flat_segment_dropna = flat_segment.dropna() |
|
|
|
|
pdf = gaussian_kde(flat_segment_dropna) |
|
|
|
|
x = np.linspace(flat_segment_dropna.min() - 1, flat_segment_dropna.max() + 1, len(flat_segment_dropna)) |
|
|
|
|
y = pdf(x) |
|
|
|
|
ax_list = [] |
|
|
|
|
for i in range(len(x)): |
|
|
|
|
ax_list.append([x[i], y[i]]) |
|
|
|
|
ax_list = np.array(ax_list, np.float32) |
|
|
|
|
antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0] |
|
|
|
|
segment_median = ax_list[antipeaks_kde[0], 0] |
|
|
|
|
cen_ind = utils.intersection_segment(flat_segment.tolist(), segment_median) #finds all interseprions with median |
|
|
|
|
jump_center = cen_ind[0] |
|
|
|
|
segment_cent_index = jump_center - 5 + segment_from_index |
|
|
|
|
deleted_jump = data[segment_cent_index - self.state['WINDOW_SIZE'] : segment_cent_index + self.state['WINDOW_SIZE'] + 1] |
|
|
|
|
deleted_jump = deleted_jump - min(labeled_jump) |
|
|
|
|
del_conv_jump = scipy.signal.fftconvolve(deleted_jump, self.model_jump) |
|
|
|
|
del_conv_list.append(max(del_conv_jump)) |
|
|
|
|
|
|
|
|
|
if len(confidences) > 0: |
|
|
|
|
self.state['confidence'] = float(min(confidences)) |
|
|
|
|
else: |
|
|
|
@ -106,6 +134,16 @@ class JumpModel(Model):
|
|
|
|
|
else: |
|
|
|
|
self.state['JUMP_LENGTH'] = 1 |
|
|
|
|
|
|
|
|
|
if len(del_conv_list) > 0: |
|
|
|
|
self.state['conv_del_min'] = float(min(del_conv_list)) |
|
|
|
|
else: |
|
|
|
|
self.state['conv_del_min'] = self.state['WINDOW_SIZE'] |
|
|
|
|
|
|
|
|
|
if len(del_conv_list) > 0: |
|
|
|
|
self.state['conv_del_max'] = float(max(del_conv_list)) |
|
|
|
|
else: |
|
|
|
|
self.state['conv_del_max'] = self.state['WINDOW_SIZE'] |
|
|
|
|
|
|
|
|
|
def do_predict(self, dataframe: pd.DataFrame) -> list: |
|
|
|
|
data = dataframe['value'] |
|
|
|
|
possible_jumps = utils.find_jump(data, self.state['JUMP_HEIGHT'], self.state['JUMP_LENGTH'] + 1) |
|
|
|
@ -132,10 +170,11 @@ class JumpModel(Model):
|
|
|
|
|
for segment in segments: |
|
|
|
|
if segment > self.state['WINDOW_SIZE'] and segment < (len(data) - self.state['WINDOW_SIZE']): |
|
|
|
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1] |
|
|
|
|
|
|
|
|
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
|
|
|
if max(conv) > self.state['convolve_max'] * 1.2 or max(conv) < self.state['convolve_min'] * 0.8: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|
if max(conv) < self.state['conv_del_max'] * 1.02 and max(conv) > self.state['conv_del_min'] * 0.98: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|
else: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|
for item in delete_list: |
|
|
|
|