|
|
@ -6,10 +6,12 @@ import pandas as pd |
|
|
|
import scipy.signal |
|
|
|
import scipy.signal |
|
|
|
from scipy.fftpack import fft |
|
|
|
from scipy.fftpack import fft |
|
|
|
from scipy.signal import argrelextrema |
|
|
|
from scipy.signal import argrelextrema |
|
|
|
|
|
|
|
from scipy.stats.stats import pearsonr |
|
|
|
import math |
|
|
|
import math |
|
|
|
from scipy.stats import gaussian_kde |
|
|
|
from scipy.stats import gaussian_kde |
|
|
|
from scipy.stats import norm |
|
|
|
from scipy.stats import norm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PEARSON_COEFF = 0.7 |
|
|
|
|
|
|
|
|
|
|
|
class GeneralModel(Model): |
|
|
|
class GeneralModel(Model): |
|
|
|
|
|
|
|
|
|
|
@ -21,10 +23,11 @@ class GeneralModel(Model): |
|
|
|
'convolve_max': 240, |
|
|
|
'convolve_max': 240, |
|
|
|
'convolve_min': 200, |
|
|
|
'convolve_min': 200, |
|
|
|
'WINDOW_SIZE': 0, |
|
|
|
'WINDOW_SIZE': 0, |
|
|
|
'conv_del_min': 100, |
|
|
|
'conv_del_min': 0, |
|
|
|
'conv_del_max': 120, |
|
|
|
'conv_del_max': 0, |
|
|
|
} |
|
|
|
} |
|
|
|
self.all_conv = [] |
|
|
|
self.all_conv = [] |
|
|
|
|
|
|
|
self.all_corr = [] |
|
|
|
|
|
|
|
|
|
|
|
def get_model_type(self) -> (str, bool): |
|
|
|
def get_model_type(self) -> (str, bool): |
|
|
|
model = 'general' |
|
|
|
model = 'general' |
|
|
@ -67,14 +70,17 @@ class GeneralModel(Model): |
|
|
|
raise ValueError('Labeled patterns must not be empty') |
|
|
|
raise ValueError('Labeled patterns must not be empty') |
|
|
|
|
|
|
|
|
|
|
|
self.all_conv = [] |
|
|
|
self.all_conv = [] |
|
|
|
for i in range(self.state['WINDOW_SIZE'] * 2, len(data)): |
|
|
|
self.all_corr = [] |
|
|
|
watch_data = data[i - self.state['WINDOW_SIZE'] * 2: i] |
|
|
|
for i in range(self.state['WINDOW_SIZE'], len(data) - self.state['WINDOW_SIZE']): |
|
|
|
|
|
|
|
watch_data = data[i - self.state['WINDOW_SIZE']: i + self.state['WINDOW_SIZE'] + 1] |
|
|
|
watch_data = utils.subtract_min_without_nan(watch_data) |
|
|
|
watch_data = utils.subtract_min_without_nan(watch_data) |
|
|
|
conv = scipy.signal.fftconvolve(watch_data, pat_data) |
|
|
|
conv = scipy.signal.fftconvolve(watch_data, pat_data) |
|
|
|
|
|
|
|
correlation = pearsonr(watch_data, pat_data) |
|
|
|
|
|
|
|
self.all_corr.append(correlation[0]) |
|
|
|
self.all_conv.append(max(conv)) |
|
|
|
self.all_conv.append(max(conv)) |
|
|
|
all_conv_peaks = utils.peak_finder(self.all_conv, self.state['WINDOW_SIZE'] * 2) |
|
|
|
all_conv_peaks = utils.peak_finder(self.all_conv, self.state['WINDOW_SIZE'] * 2) |
|
|
|
|
|
|
|
all_corr_peaks = utils.peak_finder(self.all_corr, self.state['WINDOW_SIZE'] * 2) |
|
|
|
filtered = self.__filter_detection(all_conv_peaks, data) |
|
|
|
filtered = self.__filter_detection(all_corr_peaks, data) |
|
|
|
return set(item + self.state['WINDOW_SIZE'] for item in filtered) |
|
|
|
return set(item + self.state['WINDOW_SIZE'] for item in filtered) |
|
|
|
|
|
|
|
|
|
|
|
def __filter_detection(self, segments: list, data: list): |
|
|
|
def __filter_detection(self, segments: list, data: list): |
|
|
@ -84,7 +90,11 @@ class GeneralModel(Model): |
|
|
|
for val in segments: |
|
|
|
for val in segments: |
|
|
|
if self.all_conv[val] < self.state['convolve_min'] * 0.8: |
|
|
|
if self.all_conv[val] < self.state['convolve_min'] * 0.8: |
|
|
|
delete_list.append(val) |
|
|
|
delete_list.append(val) |
|
|
|
elif (self.all_conv[val] < self.state['conv_del_max'] * 1.02 and self.all_conv[val] > self.state['conv_del_min'] * 0.98): |
|
|
|
continue |
|
|
|
|
|
|
|
if self.all_corr[val] < PEARSON_COEFF: |
|
|
|
|
|
|
|
delete_list.append(val) |
|
|
|
|
|
|
|
continue |
|
|
|
|
|
|
|
if (self.all_conv[val] < self.state['conv_del_max'] * 1.02 and self.all_conv[val] > self.state['conv_del_min'] * 0.98): |
|
|
|
delete_list.append(val) |
|
|
|
delete_list.append(val) |
|
|
|
|
|
|
|
|
|
|
|
for item in delete_list: |
|
|
|
for item in delete_list: |
|
|
|