Browse Source

common model to drop_model (#166)

pull/1/head
Alexandr Velikiy 6 years ago committed by rozetko
parent
commit
142c6baa0a
  1. 45
      analytics/models/drop_model.py

45
analytics/models/drop_model.py

@ -15,9 +15,11 @@ class DropModel(Model):
super() super()
self.segments = [] self.segments = []
self.idrops = [] self.idrops = []
self.model_drop = []
self.state = { self.state = {
'confidence': 1.5, 'confidence': 1.5,
'convolve_max': 200, 'convolve_max': 200,
'convolve_min': 200,
'DROP_HEIGHT': 1, 'DROP_HEIGHT': 1,
'DROP_LENGTH': 1, 'DROP_LENGTH': 1,
'WINDOW_SIZE': 240, 'WINDOW_SIZE': 240,
@ -29,18 +31,19 @@ class DropModel(Model):
convolve_list = [] convolve_list = []
drop_height_list = [] drop_height_list = []
drop_length_list = [] drop_length_list = []
patterns_list = []
for segment in segments: for segment in segments:
if segment['labeled']: if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1] segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0: if len(segment_data) == 0:
continue continue
segment_min = min(segment_data) segment_min = min(segment_data)
segment_max = max(segment_data) segment_max = max(segment_data)
confidences.append(0.20 * (segment_max - segment_min)) confidences.append(0.20 * (segment_max - segment_min))
flat_segment = segment_data.rolling(window=5).mean() flat_segment = segment_data.rolling(window = 5).mean()
pdf = gaussian_kde(flat_segment.dropna()) pdf = gaussian_kde(flat_segment.dropna())
x = np.linspace(flat_segment.dropna().min(), flat_segment.dropna().max(), len(flat_segment.dropna())) x = np.linspace(flat_segment.dropna().min(), flat_segment.dropna().max(), len(flat_segment.dropna()))
y = pdf(x) y = pdf(x)
@ -59,17 +62,22 @@ class DropModel(Model):
drop_height_list.append(drop_height) drop_height_list.append(drop_height)
drop_length = utils.find_drop_length(segment_data, segment_min_line, segment_max_line) drop_length = utils.find_drop_length(segment_data, segment_min_line, segment_max_line)
drop_length_list.append(drop_length) drop_length_list.append(drop_length)
cen_ind = utils.drop_intersection(flat_segment, segment_median) #finds all interseprions with median cen_ind = utils.drop_intersection(flat_segment.tolist(), segment_median) #finds all interseprions with median
drop_center = cen_ind[0] drop_center = cen_ind[0]
segment_cent_index = drop_center - 5 + segment_from_index segment_cent_index = drop_center - 5 + segment_from_index
self.idrops.append(segment_cent_index) self.idrops.append(segment_cent_index)
labeled_drop = data[segment_cent_index - self.state['WINDOW_SIZE']: segment_cent_index + self.state['WINDOW_SIZE']] labeled_drop = data[segment_cent_index - self.state['WINDOW_SIZE']: segment_cent_index + self.state['WINDOW_SIZE'] + 1]
labeled_min = min(labeled_drop) labeled_drop = labeled_drop - min(labeled_drop)
for value in labeled_drop: patterns_list.append(labeled_drop)
value = value - labeled_min
self.model_drop = utils.get_av_model(patterns_list)
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) for n in range(len(segments)):
convolve_list.append(max(convolve)) labeled_drop = data[self.idrops[n] - self.state['WINDOW_SIZE']: self.idrops[n] + self.state['WINDOW_SIZE'] + 1]
labeled_drop = labeled_drop - min(labeled_drop)
auto_convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
convolve_jump = scipy.signal.fftconvolve(labeled_drop, self.model_drop)
convolve_list.append(max(auto_convolve))
convolve_list.append(max(convolve_jump))
if len(confidences) > 0: if len(confidences) > 0:
self.state['confidence'] = float(min(confidences)) self.state['confidence'] = float(min(confidences))
@ -81,6 +89,11 @@ class DropModel(Model):
else: else:
self.state['convolve_max'] = self.state['WINDOW_SIZE'] self.state['convolve_max'] = self.state['WINDOW_SIZE']
if len(convolve_list) > 0:
self.state['convolve_min'] = float(min(convolve_list))
else:
self.state['convolve_min'] = self.state['WINDOW_SIZE']
if len(drop_height_list) > 0: if len(drop_height_list) > 0:
self.state['DROP_HEIGHT'] = int(min(drop_height_list)) self.state['DROP_HEIGHT'] = int(min(drop_height_list))
else: else:
@ -100,8 +113,8 @@ class DropModel(Model):
def __filter_prediction(self, segments: list, data: list): def __filter_prediction(self, segments: list, data: list):
delete_list = [] delete_list = []
variance_error = int(0.004 * len(data)) variance_error = int(0.004 * len(data))
if variance_error > 50: if variance_error > self.state['WINDOW_SIZE']:
variance_error = 50 variance_error = self.state['WINDOW_SIZE']
for i in range(1, len(segments)): for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error: if segments[i] < segments[i - 1] + variance_error:
@ -113,12 +126,12 @@ class DropModel(Model):
if len(segments) == 0 or len(self.idrops) == 0 : if len(segments) == 0 or len(self.idrops) == 0 :
segments = [] segments = []
return segments return segments
pattern_data = data[self.idrops[0] - self.state['WINDOW_SIZE'] : self.idrops[0] + self.state['WINDOW_SIZE']] pattern_data = self.model_drop
for segment in segments: for segment in segments:
if segment > self.state['WINDOW_SIZE'] and segment < (len(data) - self.state['WINDOW_SIZE']): if segment > self.state['WINDOW_SIZE'] and segment < (len(data) - self.state['WINDOW_SIZE']):
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE']] convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1]
conv = scipy.signal.fftconvolve(pattern_data, convol_data) conv = scipy.signal.fftconvolve(convol_data, pattern_data)
if conv[self.state['WINDOW_SIZE']*2] > self.state['convolve_max'] * 1.2 or conv[self.state['WINDOW_SIZE']*2] < self.state['convolve_max'] * 0.8: if conv[self.state['WINDOW_SIZE']*2] > self.state['convolve_max'] * 1.2 or conv[self.state['WINDOW_SIZE']*2] < self.state['convolve_min'] * 0.8:
delete_list.append(segment) delete_list.append(segment)
else: else:
delete_list.append(segment) delete_list.append(segment)

Loading…
Cancel
Save