Browse Source

WIP:Clean up utils #282 (#293)

pull/1/head
Alexandr Velikiy 6 years ago committed by Alexey Velikiy
parent
commit
0689fe6384
  1. 4
      analytics/analytics/models/drop_model.py
  2. 4
      analytics/analytics/models/jump_model.py
  3. 2
      analytics/analytics/models/peak_model.py
  4. 2
      analytics/analytics/models/trough_model.py
  5. 270
      analytics/analytics/utils/common.py

4
analytics/analytics/models/drop_model.py

@ -42,7 +42,7 @@ class DropModel(Model):
continue
confidence = utils.find_confidence(segment_data)
confidences.append(confidence)
segment_cent_index, drop_height, drop_length = utils.find_drop_parameters(segment_data, segment_from_index)
segment_cent_index, drop_height, drop_length = utils.find_parameters(segment_data, segment_from_index, "drop")
drop_height_list.append(drop_height)
drop_length_list.append(drop_length)
self.idrops.append(segment_cent_index)
@ -110,7 +110,7 @@ class DropModel(Model):
delete_list = []
variance_error = self.state['WINDOW_SIZE']
close_patterns = utils.close_filtering(segments, variance_error)
segments = utils.best_pat(close_patterns, data, 'min')
segments = utils.best_pattern(close_patterns, data, 'min')
if len(segments) == 0 or len(self.idrops) == 0 :
segments = []
return segments

4
analytics/analytics/models/jump_model.py

@ -44,7 +44,7 @@ class JumpModel(Model):
continue
confidence = utils.find_confidence(segment_data)
confidences.append(confidence)
segment_cent_index, jump_height, jump_length = utils.find_jump_parameters(segment_data, segment_from_index)
segment_cent_index, jump_height, jump_length = utils.find_parameters(segment_data, segment_from_index, "jump")
jump_height_list.append(jump_height)
jump_length_list.append(jump_length)
self.ijumps.append(segment_cent_index)
@ -112,7 +112,7 @@ class JumpModel(Model):
delete_list = []
variance_error = self.state['WINDOW_SIZE']
close_patterns = utils.close_filtering(segments, variance_error)
segments = utils.best_pat(close_patterns, data, 'max')
segments = utils.best_pattern(close_patterns, data, 'max')
if len(segments) == 0 or len(self.ijumps) == 0 :
segments = []

2
analytics/analytics/models/peak_model.py

@ -106,7 +106,7 @@ class PeakModel(Model):
delete_list = []
variance_error = self.state['WINDOW_SIZE']
close_patterns = utils.close_filtering(segments, variance_error)
segments = utils.best_pat(close_patterns, data, 'max')
segments = utils.best_pattern(close_patterns, data, 'max')
if len(segments) == 0 or len(self.ipeaks) == 0:
return []

2
analytics/analytics/models/trough_model.py

@ -107,7 +107,7 @@ class TroughModel(Model):
delete_list = []
variance_error = self.state['WINDOW_SIZE']
close_patterns = utils.close_filtering(segments, variance_error)
segments = utils.best_pat(close_patterns, data, 'min')
segments = utils.best_pattern(close_patterns, data, 'min')
if len(segments) == 0 or len(self.itroughs) == 0 :
segments = []
return segments

270
analytics/analytics/utils/common.py

@ -20,35 +20,6 @@ def exponential_smoothing(series, alpha):
result.append(alpha * series[n] + (1 - alpha) * result[n - 1])
return result
def find_steps(array, threshold):
"""
Finds local maxima by segmenting array based on positions at which
the threshold value is crossed. Note that this thresholding is
applied after the absolute value of the array is taken. Thus,
the distinction between upward and downward steps is lost. However,
get_step_sizes can be used to determine directionality after the
fact.
Parameters
----------
array : numpy array
1 dimensional array that represents time series of data points
threshold : int / float
Threshold value that defines a step
Returns
-------
steps : list
List of indices of the detected steps
"""
steps = []
array = np.abs(array)
above_points = np.where(array > threshold, 1, 0)
ap_dif = np.diff(above_points)
cross_ups = np.where(ap_dif == 1)[0]
cross_dns = np.where(ap_dif == -1)[0]
for upi, dni in zip(cross_ups,cross_dns):
steps.append(np.argmax(array[upi:dni]) + upi)
return steps
def anomalies_to_timestamp(anomalies):
for anomaly in anomalies:
anomaly['from'] = int(anomaly['from'].timestamp() * 1000)
@ -65,95 +36,18 @@ def segments_box(segments):
max_time = pd.to_datetime(max_time, unit='ms')
return min_time, max_time
def find_intersections(data: pd.Series, median: float) -> list:
"""
Finds all intersections between drop pattern data and median
"""
cen_ind = []
for i in range(1, len(data) - 1):
if data[i - 1] < median and data[i + 1] > median:
cen_ind.append(i)
del_ind = []
for i in range(1, len(cen_ind)):
if cen_ind[i] == cen_ind[i - 1] + 1:
del_ind.append(i - 1)
return [x for (idx, x) in enumerate(cen_ind) if idx not in del_ind]
def logistic_sigmoid_distribution(self, x1, x2, alpha, height):
return map(lambda x: logistic_sigmoid(x, alpha, height), range(x1, x2))
def logistic_sigmoid(x, alpha, height):
return height / (1 + math.exp(-x * alpha))
def MyLogisticSigmoid(interval, alpha, heigh):
distribution = []
for i in range(-interval, interval):
F = height / (1 + math.exp(-i * alpha))
distribution.append(F)
return distribution
def find_one_jump(data, x, size, height, err):
l = []
for i in range(x + 1, x + size):
if (data[i] > data[x] and data[x + size] > data[x] + height):
l.append(data[i])
if len(l) > size * err:
return x
else:
return 0
def find_all_jumps(data, size, height):
possible_jump_list = []
for i in range(len(data - size)):
x = find_one_jump(data, i, size, height, 0.9)
if x > 0:
possible_jump_list.append(x)
return possible_jump_list
def find_jump_center(cen_ind):
jump_center = cen_ind[0]
for i in range(len(cen_ind)):
x = cen_ind[i]
cx = scipy.signal.fftconvolve(pat_sigm, flat_data[x - WINDOW_SIZE : x + WINDOW_SIZE])
c.append(cx[2 * WINDOW_SIZE])
if i > 0 and cx > c[i - 1]:
jump_center = x
return jump_center
def find_ind_median(median, segment_data):
x = np.arange(0, len(segment_data))
f = []
for i in range(len(segment_data)):
f.append(median)
f = np.array(f)
g = []
for i in segment_data:
g.append(i)
g = np.array(g)
idx = np.argwhere(np.diff(np.sign(f - g)) != 0).reshape(-1) + 0
return idx
def find_jump_length(segment_data, min_line, max_line):
x = np.arange(0, len(segment_data))
f = []
l = []
for i in range(len(segment_data)):
f.append(min_line)
l.append(max_line)
f = np.array(f)
l = np.array(l)
g = []
for i in segment_data:
g.append(i)
g = np.array(g)
idx = np.argwhere(np.diff(np.sign(f - g)) != 0).reshape(-1) + 0
idl = np.argwhere(np.diff(np.sign(l - g)) != 0).reshape(-1) + 0
if (idl[0] - idx[-1] + 1) > 0:
return idl[0] - idx[-1] + 1
else:
print("retard alert!")
return 0
def find_pattern(data: pd.Series, height: float, lenght: int, pattern_type: str) -> list:
pattern_list = []
right_bound = len(data) - length - 1
for i in range(right_bound):
for x in range(1, lenght):
if pattern_type == 'jump':
if(data[i + x] > data[i] + height):
pattern_list.append(i)
elif pattern_type == 'drop':
if(data[i + x] < data[i] - height):
pattern_list.append(i)
return pattern_list
def find_jump(data, height, lenght):
j_list = []
@ -163,43 +57,6 @@ def find_jump(data, height, lenght):
j_list.append(i)
return(j_list)
def find_drop_length(segment_data, min_line, max_line):
x = np.arange(0, len(segment_data))
f = []
l = []
for i in range(len(segment_data)):
f.append(min_line)
l.append(max_line)
f = np.array(f)
l = np.array(l)
g = []
for i in segment_data:
g.append(i)
g = np.array(g)
idx = np.argwhere(np.diff(np.sign(f - g)) != 0).reshape(-1) + 0 #min_line
idl = np.argwhere(np.diff(np.sign(l - g)) != 0).reshape(-1) + 0 #max_line
if (idx[0] - idl[-1] + 1) > 0:
return idx[0] - idl[-1] + 1
else:
print("retard alert!")
return 0
def find_drop_intersections(segment_data: pd.Series, median_line: float) -> list:
"""
Finds all intersections between flatten data and median
"""
cen_ind = []
for i in range(1, len(segment_data)-1):
if segment_data[i - 1] > median_line and segment_data[i + 1] < median_line:
cen_ind.append(i)
# Delete close values except the last one
del_ind = []
for i in range(1, len(cen_ind)):
if cen_ind[i] == cen_ind[i - 1] + 1:
del_ind.append(i - 1)
return [x for (idx, x) in enumerate(cen_ind) if idx not in del_ind]
def find_drop(data, height, length):
d_list = []
for i in range(len(data)-length-1):
@ -242,22 +99,22 @@ def get_av_model(patterns_list):
model_pat.append(ar_mean(av_val))
return model_pat
def close_filtering(pat_list, win_size):
if len(pat_list) == 0:
def close_filtering(pattern_list, win_size):
if len(pattern_list) == 0:
return []
s = [[pat_list[0]]]
s = [[pattern_list[0]]]
k = 0
for i in range(1, len(pat_list)):
if pat_list[i] - win_size <= s[k][-1]:
s[k].append(pat_list[i])
for i in range(1, len(pattern_list)):
if pattern_list[i] - win_size <= s[k][-1]:
s[k].append(pattern_list[i])
else:
k += 1
s.append([pat_list[i]])
s.append([pattern_list[i]])
return s
def best_pat(pat_list, data, dir):
new_pat_list = []
for val in pat_list:
def best_pattern(pattern_list: list, data: pd.Series, dir: str) -> list:
new_pattern_list = []
for val in pattern_list:
max_val = data[val[0]]
min_val = data[val[0]]
ind = val[0]
@ -270,8 +127,8 @@ def best_pat(pat_list, data, dir):
if data[i] < min_val:
min_val = data[i]
ind = i
new_pat_list.append(ind)
return new_pat_list
new_pattern_list.append(ind)
return new_pattern_list
def find_nan_indexes(segment: pd.Series) -> list:
nan_list = np.isnan(segment)
@ -334,28 +191,6 @@ def get_convolve(segments: list, av_model: list, data: pd.Series, window_size: i
convolve_list.append(max(convolve_segment))
return convolve_list
def find_jump_parameters(segment_data: pd.Series, segment_from_index: int):
flat_segment = segment_data.rolling(window=5).mean()
flat_segment_dropna = flat_segment.dropna()
segment_median, segment_max_line, segment_min_line = utils.get_distribution_density(flat_segment_dropna)
jump_height = (1 - SHIFT_FACTOR) * (segment_max_line - segment_min_line)
jump_length = utils.find_jump_length(segment_data, segment_min_line, segment_max_line) # finds all interseprions with median
cen_ind = utils.find_intersections(segment_data.tolist(), segment_median)
jump_center = cen_ind[0]
segment_cent_index = jump_center + segment_from_index
return segment_cent_index, jump_height, jump_length
def find_drop_parameters(segment_data: pd.Series, segment_from_index: int):
flat_segment = segment_data.rolling(window=5).mean()
flat_segment_dropna = flat_segment.dropna()
segment_median, segment_max_line, segment_min_line = utils.get_distribution_density(flat_segment_dropna)
drop_height = (1 - SHIFT_FACTOR) * (segment_max_line - segment_min_line)
drop_length = utils.find_drop_length(segment_data, segment_min_line, segment_max_line)
cen_ind = utils.find_drop_intersections(segment_data.tolist(), segment_median)
drop_center = cen_ind[0]
segment_cent_index = drop_center + segment_from_index
return segment_cent_index, drop_height, drop_length
def get_distribution_density(segment: pd.Series) -> float:
min_jump = min(segment)
max_jump = max(segment)
@ -377,3 +212,60 @@ def get_distribution_density(segment: pd.Series) -> float:
segment_min_line = min_jump * (1 - SHIFT_FACTOR)
segment_median = (max_jump - min_jump) / 2 + min_jump
return segment_median, segment_max_line, segment_min_line
def find_parameters(segment_data: pd.Series, segment_from_index: int, pat_type: str) -> [int, float, int]:
flat_segment = segment_data.rolling(window=5).mean()
flat_segment_dropna = flat_segment.dropna()
segment_median, segment_max_line, segment_min_line = utils.get_distribution_density(flat_segment_dropna)
height = 0.95 * (segment_max_line - segment_min_line)
length = utils.find_length(segment_data, segment_min_line, segment_max_line, pat_type)
cen_ind = utils.pattern_intersection(segment_data.tolist(), segment_median, pat_type)
pat_center = cen_ind[0]
segment_cent_index = pat_center + segment_from_index
return segment_cent_index, height, length
def find_length(segment_data: pd.Series, segment_min_line: float, segment_max_line: float, pat_type: str) -> int:
x_abscissa = np.arange(0, len(segment_data))
segment_max = max(segment_data)
segment_min = min(segment_data)
if segment_min_line <= segment_min:
segment_min_line = segment_min * 1.05
if segment_max_line >= segment_max:
segment_max_line = segment_max * 0.95
min_line = []
max_line = []
for i in range(len(segment_data)):
min_line.append(segment_min_line)
max_line.append(segment_max_line)
min_line = np.array(min_line)
max_line = np.array(max_line)
segment_array = np.array(segment_data.tolist())
idmin = np.argwhere(np.diff(np.sign(min_line - segment_array)) != 0).reshape(-1)
idmax = np.argwhere(np.diff(np.sign(max_line - segment_array)) != 0).reshape(-1)
if len(idmin) > 0 and len(idmax) > 0:
if pat_type == 'jump':
result_length = idmax[0] - idmin[-1] + 1
elif pat_type == 'drop':
result_length = idmin[0] - idmax[-1] + 1
return result_length if result_length > 0 else 0
else:
return 0
def pattern_intersection(segment_data: list, median: float, pattern_type: str) -> list:
center_index = []
if pattern_type == 'jump':
for i in range(1, len(segment_data) - 1):
if segment_data[i - 1] < median and segment_data[i + 1] > median:
center_index.append(i)
elif pattern_type == 'drop':
for i in range(1, len(segment_data) - 1):
if segment_data[i - 1] > median and segment_data[i + 1] < median:
center_index.append(i)
delete_index = []
for i in range(1, len(center_index)):
if center_index[i] == center_index[i - 1] + 1:
delete_index.append(i - 1)
return [x for (idx, x) in enumerate(center_index) if idx not in delete_index]

Loading…
Cancel
Save