|
|
|
# Hastic server
|
|
|
|
|
|
|
|
Implementation of basic pattern recognition and unsupervised learning for anomaly detection.
|
|
|
|
|
|
|
|
Implementation of analytic unit for Hastic.
|
|
|
|
see [REST API](REST.md)
|
|
|
|
|
|
|
|
## Build & run
|
|
|
|
|
|
|
|
Server needs Grafana's API key (http://<your_grafana_url>/org/apikeys) to query data from Grafana datasources.
|
|
|
|
|
|
|
|
API key role can be any of:
|
|
|
|
- Viewer
|
|
|
|
- Editor
|
|
|
|
- Admin
|
|
|
|
|
|
|
|
### Docker installation
|
|
|
|
|
|
|
|
Example of running hastic-server in Docker:
|
|
|
|
|
|
|
|
```
|
|
|
|
docker build -t hastic-server .
|
|
|
|
docker run -d --name hastic-server -p 80:8000 -e HASTIC_API_KEY=<your_grafana_api_key> hastic-server
|
|
|
|
```
|
|
|
|
|
|
|
|
### Linux installation
|
|
|
|
|
|
|
|
#### Environment variables
|
|
|
|
|
|
|
|
You can export following environment variables for hastic-server to use:
|
|
|
|
- HASTIC_API_KEY - (required) API-key of your Grafana instance
|
|
|
|
- HASTIC_PORT - (optional) port you want to run server on, default: 8000
|
|
|
|
|
|
|
|
#### Dependencies
|
|
|
|
|
|
|
|
- python3 with:
|
|
|
|
- pip
|
|
|
|
- pandas
|
|
|
|
- seglearn
|
|
|
|
- scipy
|
|
|
|
- tsfresh
|
|
|
|
- nodejs >= 9
|
|
|
|
|
|
|
|
Example of running hastic-server on Debian / Ubuntu host:
|
|
|
|
|
|
|
|
```
|
|
|
|
$ export HASTIC_API_KEY=<your_grafana_api_key>
|
|
|
|
$ export HASTIC_PORT=<port_you_want_to_run_server_on>
|
|
|
|
# apt-get install python3 \
|
|
|
|
python3-pip \
|
|
|
|
gnupg \
|
|
|
|
curl \
|
|
|
|
make \
|
|
|
|
g++ \
|
|
|
|
git
|
|
|
|
$ pip3 install pandas
|
|
|
|
$ pip3 install seglearn
|
|
|
|
$ pip3 install scipy
|
|
|
|
$ pip3 install tsfresh
|
|
|
|
$ curl -sL https://deb.nodesource.com/setup_9.x | bash -
|
|
|
|
# apt-get update && apt-get install -y nodejs
|
|
|
|
$ cd server
|
|
|
|
$ npm install && npm run build
|
|
|
|
$ npm start
|
|
|
|
```
|