You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

46 lines
1.7 KiB

7 years ago
from fbprophet import Prophet
import pandas as pd
class prophet_algorithm(object):
def __init__(self):
self.model = None
self.dataset = None
def fit(self, data, anomalies):
pass
def predict(self, data):
data = data.reset_index()
data = data.rename(columns={'timestamp': 'ds', 'value': 'y'})
self.dataset = data
self.model = Prophet(yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=True)
self.model.fit(self.dataset)
future = self.model.make_future_dataframe(freq='H', periods=0, include_history=True)
forecast = self.model.predict(future)
cmp_df = forecast.set_index('ds')[['yhat', 'yhat_lower', 'yhat_upper']].join(self.dataset.set_index('ds'))
cmp_df['e'] = [ max(row.y - row.yhat_upper, row.yhat_lower - row.y, 0) for index, row in cmp_df.iterrows() ]
return self.__calc_anomalies(cmp_df)
def __calc_anomalies(self, dataset):
anomalies = []
cur_anomaly = None
for i in range(len(dataset)):
if dataset['e'][i] > 17:
if cur_anomaly is None:
cur_anomaly = {'start': dataset.index[i], 'finish': dataset.index[i], 'weight': 0}
cur_anomaly['finish'] = dataset.index[i]
cur_anomaly['weight'] += dataset['e'][i]
elif cur_anomaly is not None:
anomalies.append(cur_anomaly)
cur_anomaly = None
return anomalies
if __name__ == "__main__":
dataset = pd.read_csv('art_daily_flatmiddle.csv', index_col=['timestamp'], parse_dates=['timestamp'])
algo = prophet_algorithm(dataset)
res = algo.fit()
print(res)