You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

138 lines
6.8 KiB

import unittest
import pandas as pd
import numpy as np
from analytic_unit_manager import prepare_data
import models
class TestDataset(unittest.TestCase):
def test_models_with_corrupted_dataframe(self):
data = [[1523889000000 + i, float('nan')] for i in range(10)]
dataframe = pd.DataFrame(data, columns=['timestamp', 'value'])
segments = []
model_instances = [
models.JumpModel(),
models.DropModel(),
models.GeneralModel(),
models.PeakModel(),
models.TroughModel()
]
try:
for model in model_instances:
model_name = model.__class__.__name__
model.fit(dataframe, segments, dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_peak_antisegments(self):
data_val = [1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 5.0, 7.0, 5.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
dataframe = create_dataframe(data_val)
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False},
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000003, 'to': 1523889000005, 'labeled': False, 'deleted': True}]
try:
model = models.PeakModel()
model_name = model.__class__.__name__
model.fit(dataframe, segments, dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_jump_antisegments(self):
data_val = [1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 5.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0, 9.0, 9.0, 9.0, 1.0, 1.0]
dataframe = create_dataframe(data_val)
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000016, 'labeled': True, 'deleted': False},
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000002, 'to': 1523889000008, 'labeled': False, 'deleted': True}]
try:
model = models.JumpModel()
model_name = model.__class__.__name__
model.fit(dataframe, segments, dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_trough_antisegments(self):
data_val = [9.0, 9.0, 9.0, 9.0, 7.0, 4.0, 7.0, 9.0, 9.0, 9.0, 5.0, 1.0, 5.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0]
dataframe = create_dataframe(data_val)
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False},
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000003, 'to': 1523889000005, 'labeled': False, 'deleted': True}]
try:
model = models.TroughModel()
model_name = model.__class__.__name__
model.fit(dataframe, segments, dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_drop_antisegments(self):
data_val = [9.0, 9.0, 9.0, 9.0, 9.0, 5.0, 5.0, 5.0, 5.0, 9.0, 9.0, 9.0, 9.0, 1.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0]
dataframe = create_dataframe(data_val)
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000016, 'labeled': True, 'deleted': False},
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000002, 'to': 1523889000008, 'labeled': False, 'deleted': True}]
try:
model = models.DropModel()
model_name = model.__class__.__name__
model.fit(dataframe, segments, dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_general_antisegments(self):
data_val = [1.0, 2.0, 1.0, 2.0, 5.0, 6.0, 3.0, 2.0, 1.0, 1.0, 8.0, 9.0, 8.0, 1.0, 2.0, 3.0, 2.0, 1.0, 1.0, 2.0]
dataframe = create_dataframe(data_val)
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False},
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000003, 'to': 1523889000005, 'labeled': False, 'deleted': True}]
try:
model = models.GeneralModel()
model_name = model.__class__.__name__
model.fit(dataframe, segments, dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_value_error_dataset_input_should_have_multiple_elements(self):
data_val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 5.0, 4.0, 5.0, 5.0, 6.0, 5.0, 1.0, 2.0, 3.0, 4.0, 5.0,3.0,3.0,2.0,7.0,8.0,9.0,8.0,7.0,6.0]
dataframe = create_dataframe(data_val)
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000007, 'to': 1523889000011, 'labeled': True, 'deleted': False}]
try:
model = models.JumpModel()
model_name = model.__class__.__name__
model.fit(dataframe, segments, dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_prepare_data_for_nonetype(self):
data = [[1523889000000, None], [1523889000001, None], [1523889000002, None]]
try:
data = prepare_data(data)
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_prepare_data_for_nan(self):
data = [[1523889000000, np.NaN], [1523889000001, np.NaN], [1523889000002, np.NaN]]
try:
data = prepare_data(data)
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_prepare_data_output_fon_nan(self):
data_nan = [[1523889000000, np.NaN], [1523889000001, np.NaN], [1523889000002, np.NaN]]
data_none = [[1523889000000, None], [1523889000001, None], [1523889000002, None]]
return_data_nan = prepare_data(data_nan)
return_data_none = prepare_data(data_none)
for item in return_data_nan:
self.assertTrue(np.isnan(item.value))
for item in return_data_none:
self.assertTrue(np.isnan(item.value))
if __name__ == '__main__':
unittest.main()
def create_dataframe(data_val: list) -> pd.DataFrame:
data_ind = [1523889000000 + i for i in range(len(data_val))]
data = {'timestamp': data_ind, 'value': data_val}
dataframe = pd.DataFrame(data)
dataframe['timestamp'] = pd.to_datetime(dataframe['timestamp'], unit='ms')
return dataframe