|
|
|
import unittest
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
from analytic_unit_manager import prepare_data
|
|
|
|
import models
|
|
|
|
|
|
|
|
class TestDataset(unittest.TestCase):
|
|
|
|
|
|
|
|
def test_models_with_corrupted_dataframe(self):
|
|
|
|
data = [[1523889000000 + i, float('nan')] for i in range(10)]
|
|
|
|
dataframe = pd.DataFrame(data, columns=['timestamp', 'value'])
|
|
|
|
segments = []
|
|
|
|
|
|
|
|
model_instances = [
|
|
|
|
models.JumpModel(),
|
|
|
|
models.DropModel(),
|
|
|
|
models.GeneralModel(),
|
|
|
|
models.PeakModel(),
|
|
|
|
models.TroughModel()
|
|
|
|
]
|
|
|
|
try:
|
|
|
|
for model in model_instances:
|
|
|
|
model_name = model.__class__.__name__
|
|
|
|
model.fit(dataframe, segments, dict())
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_peak_antisegments(self):
|
|
|
|
data_val = [1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 5.0, 7.0, 5.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
|
|
|
dataframe = create_dataframe(data_val)
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False},
|
|
|
|
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000003, 'to': 1523889000005, 'labeled': False, 'deleted': True}]
|
|
|
|
|
|
|
|
try:
|
|
|
|
model = models.PeakModel()
|
|
|
|
model_name = model.__class__.__name__
|
|
|
|
model.fit(dataframe, segments, dict())
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_jump_antisegments(self):
|
|
|
|
data_val = [1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 5.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0, 9.0, 9.0, 9.0, 1.0, 1.0]
|
|
|
|
dataframe = create_dataframe(data_val)
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000016, 'labeled': True, 'deleted': False},
|
|
|
|
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000002, 'to': 1523889000008, 'labeled': False, 'deleted': True}]
|
|
|
|
|
|
|
|
try:
|
|
|
|
model = models.JumpModel()
|
|
|
|
model_name = model.__class__.__name__
|
|
|
|
model.fit(dataframe, segments, dict())
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_trough_antisegments(self):
|
|
|
|
data_val = [9.0, 9.0, 9.0, 9.0, 7.0, 4.0, 7.0, 9.0, 9.0, 9.0, 5.0, 1.0, 5.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0]
|
|
|
|
dataframe = create_dataframe(data_val)
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False},
|
|
|
|
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000003, 'to': 1523889000005, 'labeled': False, 'deleted': True}]
|
|
|
|
|
|
|
|
try:
|
|
|
|
model = models.TroughModel()
|
|
|
|
model_name = model.__class__.__name__
|
|
|
|
model.fit(dataframe, segments, dict())
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_drop_antisegments(self):
|
|
|
|
data_val = [9.0, 9.0, 9.0, 9.0, 9.0, 5.0, 5.0, 5.0, 5.0, 9.0, 9.0, 9.0, 9.0, 1.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0]
|
|
|
|
dataframe = create_dataframe(data_val)
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000016, 'labeled': True, 'deleted': False},
|
|
|
|
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000002, 'to': 1523889000008, 'labeled': False, 'deleted': True}]
|
|
|
|
|
|
|
|
try:
|
|
|
|
model = models.DropModel()
|
|
|
|
model_name = model.__class__.__name__
|
|
|
|
model.fit(dataframe, segments, dict())
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_general_antisegments(self):
|
|
|
|
data_val = [1.0, 2.0, 1.0, 2.0, 5.0, 6.0, 3.0, 2.0, 1.0, 1.0, 8.0, 9.0, 8.0, 1.0, 2.0, 3.0, 2.0, 1.0, 1.0, 2.0]
|
|
|
|
dataframe = create_dataframe(data_val)
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False},
|
|
|
|
{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000003, 'to': 1523889000005, 'labeled': False, 'deleted': True}]
|
|
|
|
|
|
|
|
try:
|
|
|
|
model = models.GeneralModel()
|
|
|
|
model_name = model.__class__.__name__
|
|
|
|
model.fit(dataframe, segments, dict())
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_value_error_dataset_input_should_have_multiple_elements(self):
|
|
|
|
data_val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 5.0, 4.0, 5.0, 5.0, 6.0, 5.0, 1.0, 2.0, 3.0, 4.0, 5.0,3.0,3.0,2.0,7.0,8.0,9.0,8.0,7.0,6.0]
|
|
|
|
dataframe = create_dataframe(data_val)
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000007, 'to': 1523889000011, 'labeled': True, 'deleted': False}]
|
|
|
|
|
|
|
|
try:
|
|
|
|
model = models.JumpModel()
|
|
|
|
model_name = model.__class__.__name__
|
|
|
|
model.fit(dataframe, segments, dict())
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_prepare_data_for_nonetype(self):
|
|
|
|
data = [[1523889000000, None], [1523889000001, None], [1523889000002, None]]
|
|
|
|
try:
|
|
|
|
data = prepare_data(data)
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
def test_prepare_data_for_nan(self):
|
|
|
|
data = [[1523889000000, np.NaN], [1523889000001, np.NaN], [1523889000002, np.NaN]]
|
|
|
|
try:
|
|
|
|
data = prepare_data(data)
|
|
|
|
except ValueError:
|
|
|
|
self.fail('Model {} raised unexpectedly'.format(model_name))
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|
|
|
|
|
|
|
|
def create_dataframe(data_val: list) -> pd.DataFrame:
|
|
|
|
data_ind = [1523889000000 + i for i in range(len(data_val))]
|
|
|
|
data = {'timestamp': data_ind, 'value': data_val}
|
|
|
|
dataframe = pd.DataFrame(data)
|
|
|
|
dataframe['timestamp'] = pd.to_datetime(dataframe['timestamp'], unit='ms')
|
|
|
|
return dataframe
|