|
|
|
import { SqlConnector } from '../src/connectors/sql';
|
|
|
|
import { DatasourceType, DatasourceQuery } from '../src/connectors';
|
|
|
|
|
|
|
|
import 'jest';
|
|
|
|
import * as _ from 'lodash';
|
|
|
|
|
|
|
|
|
|
|
|
describe('Test query creation', function() {
|
|
|
|
|
|
|
|
let limit = 1000;
|
|
|
|
let offset = 0;
|
|
|
|
let from = 1542983750857;
|
|
|
|
let to = 1542984313292;
|
|
|
|
let connector = getConnectorForSqlQuery();
|
|
|
|
let mQuery: DatasourceQuery = connector.getQuery(from, to, limit, offset);
|
|
|
|
|
|
|
|
it('test that payload placed to data field', function() {
|
|
|
|
expect('data' in mQuery.schema).toBeTruthy();
|
|
|
|
expect('queries' in mQuery.schema.data).toBeTruthy();
|
|
|
|
expect(mQuery.schema.data.queries).toBeInstanceOf(Array);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('test from/to casting to string', function() {
|
|
|
|
expect(typeof mQuery.schema.data.from).toBe('string');
|
|
|
|
expect(typeof mQuery.schema.data.to).toBe('string');
|
|
|
|
});
|
|
|
|
|
|
|
|
it('method should be POST', function() {
|
|
|
|
expect(mQuery.method.toLocaleLowerCase()).toBe('post');
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe('Test result parsing', function() {
|
|
|
|
let connector = getConnectorForSqlQuery();
|
|
|
|
let timestamps = [1542983800000, 1542983800060, 1542983800120]
|
|
|
|
let response = {
|
|
|
|
data: {
|
|
|
|
results: {
|
|
|
|
A: {
|
|
|
|
frames: [
|
|
|
|
{
|
|
|
|
schema: {
|
|
|
|
refId: 'A',
|
|
|
|
meta: {
|
|
|
|
'executedQueryString': 'SELECT\n \"time\" AS \"time\",\n eur\nFROM rate_test\nWHERE\n \"time\" >= 1669648679 AND \"time\" <= 1672240679\nORDER BY 1'
|
|
|
|
},
|
|
|
|
fields: [
|
|
|
|
{
|
|
|
|
name: 'Time',
|
|
|
|
type: 'time',
|
|
|
|
typeInfo: {
|
|
|
|
frame: 'time.Time',
|
|
|
|
nullable: true
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'eur',
|
|
|
|
type: 'number',
|
|
|
|
typeInfo: {
|
|
|
|
frame: 'float64',
|
|
|
|
nullable: true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
},
|
|
|
|
data: {
|
|
|
|
values: [
|
|
|
|
[ timestamps[0], timestamps[1], timestamps[2] ],
|
|
|
|
[ 1.53, 1.17, 1.17 ],
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let result = connector.parseResponse(response);
|
|
|
|
|
|
|
|
it('check results columns order', function() {
|
|
|
|
let timestampColumnNumber = result.columns.indexOf('Time');
|
|
|
|
expect(result.values.map(v => v[timestampColumnNumber])).toEqual(timestamps);
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe('Test sql processing', function() {
|
|
|
|
let limit = 1000;
|
|
|
|
let offset = 77;
|
|
|
|
let from = 1542983750857;
|
|
|
|
let to = 1542984313292;
|
|
|
|
|
|
|
|
let check = function(original: string, expected: string) {
|
|
|
|
checkExpectation(original, expected, from, to, limit, offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
it('simple sql with one select', function() {
|
|
|
|
let original = `SELECT
|
|
|
|
\"time\" AS \"time\",
|
|
|
|
val
|
|
|
|
FROM local
|
|
|
|
ORDER BY 1`;
|
|
|
|
let expected = `SELECT
|
|
|
|
\"time\" AS \"time\",
|
|
|
|
val
|
|
|
|
FROM local
|
|
|
|
ORDER BY 1 LIMIT ${limit} OFFSET ${offset}`;
|
|
|
|
check(original, expected);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('sql with order by rows', function() {
|
|
|
|
let original = `SELECT
|
|
|
|
$__time(time),
|
|
|
|
AVG(power) OVER(ORDER BY speed ROWS BETWEEN 150 PRECEDING AND CURRENT ROW)
|
|
|
|
FROM
|
|
|
|
wind_pwr_spd
|
|
|
|
WHERE
|
|
|
|
$__timeFilter(time)`;
|
|
|
|
let expected = `SELECT
|
|
|
|
$__time(time),
|
|
|
|
AVG(power) OVER(ORDER BY speed ROWS BETWEEN 150 PRECEDING AND CURRENT ROW)
|
|
|
|
FROM
|
|
|
|
wind_pwr_spd
|
|
|
|
WHERE
|
|
|
|
$__timeFilter(time) LIMIT ${limit} OFFSET ${offset}`;
|
|
|
|
check(original,expected);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('sql with offset limit', function() {
|
|
|
|
let original = `WITH RECURSIVE t(n) AS (
|
|
|
|
VALUES (1)
|
|
|
|
UNION ALL
|
|
|
|
SELECT n+1 FROM t WHERE n < 100
|
|
|
|
)
|
|
|
|
SELECT sum(n) FROM t OFFSET 0 LIMIT 0;`;
|
|
|
|
|
|
|
|
|
|
|
|
let expected = `WITH RECURSIVE t(n) AS (
|
|
|
|
VALUES (1)
|
|
|
|
UNION ALL
|
|
|
|
SELECT n+1 FROM t WHERE n < 100
|
|
|
|
)
|
|
|
|
SELECT sum(n) FROM t OFFSET ${offset} LIMIT ${limit};`;
|
|
|
|
check(original, expected);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('sql with macroses', function() {
|
|
|
|
let original = `SELECT
|
|
|
|
time
|
|
|
|
FROM metric_values
|
|
|
|
WHERE time > $__timeFrom()
|
|
|
|
OR time < $__timeFrom()
|
|
|
|
OR 1 < $__unixEpochFrom()
|
|
|
|
OR $__unixEpochTo() > 1 ORDER BY 1`;
|
|
|
|
let expected = `SELECT
|
|
|
|
time
|
|
|
|
FROM metric_values
|
|
|
|
WHERE time > $__timeFrom()
|
|
|
|
OR time < $__timeFrom()
|
|
|
|
OR 1 < $__unixEpochFrom()
|
|
|
|
OR $__unixEpochTo() > 1 ORDER BY 1 LIMIT ${limit} OFFSET ${offset}`;
|
|
|
|
check(original, expected);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('sql with $__timeGroup aggregation', function () {
|
|
|
|
const original = `SELECT
|
|
|
|
$__timeGroup("time", $__interval, NULL),
|
|
|
|
avg("metric") AS "Réseau"
|
|
|
|
FROM metric_values
|
|
|
|
WHERE $__timeFilter("time")
|
|
|
|
GROUP BY 1
|
|
|
|
ORDER BY 1`;
|
|
|
|
const expected = `SELECT
|
|
|
|
"time",
|
|
|
|
avg("metric") AS "Réseau"
|
|
|
|
FROM metric_values
|
|
|
|
WHERE $__timeFilter("time")
|
|
|
|
GROUP BY 1
|
|
|
|
ORDER BY 1 LIMIT ${limit} OFFSET ${offset}`;
|
|
|
|
check(original, expected);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('sql with $__timeGroupAlias aggregation', function () {
|
|
|
|
const original = `SELECT
|
|
|
|
$__timeGroupAlias("time", $__interval),
|
|
|
|
avg("metric") AS "Réseau"
|
|
|
|
FROM metric_values
|
|
|
|
WHERE $__timeFilter("time")
|
|
|
|
GROUP BY 1
|
|
|
|
ORDER BY 1`;
|
|
|
|
const expected = `SELECT
|
|
|
|
"time",
|
|
|
|
avg("metric") AS "Réseau"
|
|
|
|
FROM metric_values
|
|
|
|
WHERE $__timeFilter("time")
|
|
|
|
GROUP BY 1
|
|
|
|
ORDER BY 1 LIMIT ${limit} OFFSET ${offset}`;
|
|
|
|
check(original, expected);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('sql with $__timeGroupAlias aggregation and linebreaks', function () {
|
|
|
|
const original = `SELECT
|
|
|
|
$__timeGroupAlias(
|
|
|
|
any_field,
|
|
|
|
$__interval
|
|
|
|
),
|
|
|
|
avg("metric") AS "Réseau"
|
|
|
|
FROM metric_values
|
|
|
|
WHERE $__timeFilter(any_field)
|
|
|
|
GROUP BY 1
|
|
|
|
ORDER BY 1`;
|
|
|
|
const expected = `SELECT
|
|
|
|
any_field,
|
|
|
|
avg("metric") AS "Réseau"
|
|
|
|
FROM metric_values
|
|
|
|
WHERE $__timeFilter(any_field)
|
|
|
|
GROUP BY 1
|
|
|
|
ORDER BY 1 LIMIT ${limit} OFFSET ${offset}`;
|
|
|
|
check(original, expected);
|
|
|
|
});
|
|
|
|
|
|
|
|
it('complex sql with one select', function() {
|
|
|
|
let original = `SELECT
|
|
|
|
statistics.created_at as time,
|
|
|
|
CAST(statistics.value AS decimal) as value,
|
|
|
|
sensor.title as metric
|
|
|
|
FROM statistics
|
|
|
|
INNER JOIN sensor
|
|
|
|
ON sensor.id = statistics.sensor_id
|
|
|
|
WHERE
|
|
|
|
statistics.device_id = '000-aaaa-bbbb'
|
|
|
|
AND sensor.type = 5
|
|
|
|
AND sensor.section_id IN($section_id)
|
|
|
|
AND statistics.value != 'ERR'
|
|
|
|
AND statistics.value !='???'
|
|
|
|
AND $__timeFilter(statistics.created_at)`;
|
|
|
|
let expected = `SELECT
|
|
|
|
statistics.created_at as time,
|
|
|
|
CAST(statistics.value AS decimal) as value,
|
|
|
|
sensor.title as metric
|
|
|
|
FROM statistics
|
|
|
|
INNER JOIN sensor
|
|
|
|
ON sensor.id = statistics.sensor_id
|
|
|
|
WHERE
|
|
|
|
statistics.device_id = '000-aaaa-bbbb'
|
|
|
|
AND sensor.type = 5
|
|
|
|
AND sensor.section_id IN($section_id)
|
|
|
|
AND statistics.value != 'ERR'
|
|
|
|
AND statistics.value !='???'
|
|
|
|
AND $__timeFilter(statistics.created_at) LIMIT ${limit} OFFSET ${offset}`;
|
|
|
|
check(original, expected);
|
|
|
|
})
|
|
|
|
|
|
|
|
it('sql with number of nested select', function() {
|
|
|
|
let original = `WITH regional_sales AS (
|
|
|
|
SELECT region, SUM(amount) AS total_sales
|
|
|
|
FROM orders
|
|
|
|
GROUP BY region LIMIT 5 OFFSET 1
|
|
|
|
), top_regions AS (
|
|
|
|
SELECT region
|
|
|
|
FROM regional_sales
|
|
|
|
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
|
|
|
|
LIMIT 3
|
|
|
|
)
|
|
|
|
SELECT region,
|
|
|
|
product,
|
|
|
|
SUM(quantity) AS product_units,
|
|
|
|
SUM(amount) AS product_sales
|
|
|
|
FROM orders
|
|
|
|
WHERE region IN (SELECT region FROM top_regions)
|
|
|
|
GROUP BY region, product OFFSET 500;`;
|
|
|
|
let expected = `WITH regional_sales AS (
|
|
|
|
SELECT region, SUM(amount) AS total_sales
|
|
|
|
FROM orders
|
|
|
|
GROUP BY region LIMIT 5 OFFSET 1
|
|
|
|
), top_regions AS (
|
|
|
|
SELECT region
|
|
|
|
FROM regional_sales
|
|
|
|
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
|
|
|
|
LIMIT 3
|
|
|
|
)
|
|
|
|
SELECT region,
|
|
|
|
product,
|
|
|
|
SUM(quantity) AS product_units,
|
|
|
|
SUM(amount) AS product_sales
|
|
|
|
FROM orders
|
|
|
|
WHERE region IN (SELECT region FROM top_regions)
|
|
|
|
GROUP BY region, product OFFSET ${offset} LIMIT ${limit};`;
|
|
|
|
check(original, expected);
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
function checkExpectation(original: string, expected: string, from: number, to: number, limit: number, offset: number) {
|
|
|
|
let metric = getConnectorForSqlQuery(original);
|
|
|
|
expect(metric.getQuery(from, to, limit, offset).schema.data.queries[0].rawSql).toBe(expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
function getConnectorForSqlQuery(query: string = ''): SqlConnector {
|
|
|
|
const queryPayload = {
|
|
|
|
from: 1542983750857,
|
|
|
|
to: 1542984313292
|
|
|
|
};
|
|
|
|
|
|
|
|
const datasource = {
|
|
|
|
url: 'api/tsdb/query',
|
|
|
|
type: DatasourceType.POSTGRES,
|
|
|
|
data: queryPayload
|
|
|
|
};
|
|
|
|
|
|
|
|
const targets = [{
|
|
|
|
refId: 'A',
|
|
|
|
intervalMs: 2000,
|
|
|
|
maxDataPoints: 191,
|
|
|
|
datasourceId: 1,
|
|
|
|
rawSql: query,
|
|
|
|
format: 'time_series'
|
|
|
|
}];
|
|
|
|
|
|
|
|
return new SqlConnector(datasource, targets);
|
|
|
|
}
|