You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
2.6 KiB
88 lines
2.6 KiB
import models |
|
import utils |
|
|
|
from grafana_data_provider import GrafanaDataProvider |
|
|
|
import logging |
|
from urllib.parse import urlparse |
|
import os.path |
|
import json |
|
import config |
|
|
|
import pandas as pd |
|
|
|
|
|
logger = logging.getLogger('analytic_toolset') |
|
|
|
|
|
|
|
def resolve_model_by_pattern(pattern: str) -> models.Model: |
|
if pattern == 'PEAK': |
|
return models.PeaksModel() |
|
if pattern == 'DROP': |
|
return models.StepModel() |
|
if pattern == 'JUMP': |
|
return models.JumpModel() |
|
if pattern == 'CUSTOM': |
|
return models.CustomModel() |
|
raise ValueError('Unknown pattern "%s"' % pattern) |
|
|
|
|
|
class PatternDetector: |
|
|
|
def __init__(self, analytic_unit_id, pattern_type): |
|
self.analytic_unit_id = analytic_unit_id |
|
self.pattern_type = pattern_type |
|
|
|
self.model = None |
|
self.__load_model(pattern_type) |
|
|
|
async def learn(self, segments): |
|
self.model = resolve_model_by_pattern(self.pattern_type) |
|
window_size = 200 |
|
|
|
dataframe = self.data_prov.get_dataframe() |
|
|
|
segments = self.data_prov.transform_anomalies(segments) |
|
# TODO: pass only part of dataframe that has segments |
|
self.model.fit(dataframe, segments) |
|
self.__save_model() |
|
return 0 |
|
|
|
async def predict(self, last_prediction_time): |
|
if self.model is None: |
|
return [], last_prediction_time |
|
|
|
window_size = 100 |
|
last_prediction_time = pd.to_datetime(last_prediction_time, unit='ms') |
|
|
|
start_index = self.data_prov.get_upper_bound(last_prediction_time) |
|
start_index = max(0, start_index - window_size) |
|
dataframe = self.data_prov.get_data_range(start_index) |
|
|
|
predicted_indexes = self.model.predict(dataframe) |
|
predicted_indexes = [(x, y) for (x, y) in predicted_indexes if x >= start_index and y >= start_index] |
|
|
|
predicted_times = self.data_prov.inverse_transform_indexes(predicted_indexes) |
|
segments = [] |
|
for time_value in predicted_times: |
|
ts1 = int(time_value[0].timestamp() * 1000) |
|
ts2 = int(time_value[1].timestamp() * 1000) |
|
segments.append({ |
|
'start': min(ts1, ts2), |
|
'finish': max(ts1, ts2) |
|
}) |
|
|
|
last_dataframe_time = dataframe.iloc[-1]['timestamp'] |
|
last_prediction_time = int(last_dataframe_time.timestamp() * 1000) |
|
return segments, last_prediction_time |
|
# return predicted_anomalies, last_prediction_time |
|
|
|
def synchronize_data(self): |
|
self.data_prov.synchronize() |
|
|
|
def __save_model(self): |
|
# TODO: use data_service to save anything |
|
|
|
def __load_model(self, pattern): |
|
# TODO: use data_service to save anything
|
|
|