You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

81 lines
2.9 KiB

from models import Model
import utils
import numpy as np
import pandas as pd
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
import math
from scipy.stats import gaussian_kde
from scipy.stats import norm
class GeneralModel(Model):
def __init__(self):
super()
self.segments = []
self.ipats = []
self.state = {
'convolve_max': 200,
'WINDOW_SIZE': 240,
}
self.all_conv = []
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None:
data = dataframe['value']
convolve_list = []
for segment in segments:
if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0:
continue
x = segment_from_index + int((segment_to_index - segment_from_index) / 2)
self.ipats.append(x)
segment_data = data[x - self.state['WINDOW_SIZE'] : x + self.state['WINDOW_SIZE']]
segment_min = min(segment_data)
segment_data = segment_data - segment_min
convolve = scipy.signal.fftconvolve(segment_data, segment_data)
convolve_list.append(max(convolve))
if len(convolve_list) > 0:
self.state['convolve_max'] = float(max(convolve_list))
else:
self.state['convolve_max'] = self.state['WINDOW_SIZE'] / 3
def do_predict(self, dataframe: pd.DataFrame) -> list:
data = dataframe['value']
pat_data = data[self.ipats[0] - self.state['WINDOW_SIZE']: self.ipats[0] + self.state['WINDOW_SIZE']]
x = min(pat_data)
pat_data = pat_data - x
y = max(pat_data)
for i in range(self.state['WINDOW_SIZE'] * 2, len(data)):
watch_data = data[i - self.state['WINDOW_SIZE'] * 2: i]
w = min(watch_data)
watch_data = watch_data - w
conv = scipy.signal.fftconvolve(pat_data, watch_data)
self.all_conv.append(max(conv))
all_conv_peaks = utils.peak_finder(self.all_conv, self.state['WINDOW_SIZE'] * 2)
filtered = self.__filter_prediction(all_conv_peaks, data)
return set(item + self.state['WINDOW_SIZE'] for item in filtered)
def __filter_prediction(self, segments: list, data: list):
if len(segments) == 0 or len(self.ipats) == 0:
return []
delete_list = []
for val in segments:
if self.all_conv[val] < self.state['convolve_max'] * 0.8:
delete_list.append(val)
for item in delete_list:
segments.remove(item)
return set(segments)