You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

162 lines
6.3 KiB

import utils
import unittest
import numpy as np
import pandas as pd
import math
class TestUtils(unittest.TestCase):
#example test for test's workflow purposes
def test_segment_parsion(self):
self.assertTrue(True)
def test_confidence_all_normal_value(self):
segment = [1, 2, 0, 6, 8, 5, 3]
utils_result = utils.find_confidence(segment)
result = 1.6
relative_tolerance = 1e-2
self.assertTrue(math.isclose(utils_result, result, rel_tol = relative_tolerance))
def test_confidence_all_nan_value(self):
segment = [np.NaN, np.NaN, np.NaN, np.NaN]
self.assertEqual(utils.find_confidence(segment), 0)
def test_confidence_with_nan_value(self):
data = [np.NaN, np.NaN, 0, 8]
utils_result = utils.find_confidence(data)
result = 1.6
relative_tolerance = 1e-2
self.assertTrue(math.isclose(utils_result, result, rel_tol = relative_tolerance))
def test_interval_all_normal_value(self):
data = [1, 2, 1, 2, 4, 1, 2, 4, 5, 6]
data = pd.Series(data)
center = 4
window_size = 2
result = [1, 2, 4, 1, 2]
self.assertEqual(list(utils.get_interval(data, center, window_size)), result)
def test_interval_wrong_ws(self):
data = [1, 2, 4, 1, 2, 4]
data = pd.Series(data)
center = 3
window_size = 6
result = [1, 2, 4, 1, 2, 4]
self.assertEqual(list(utils.get_interval(data, center, window_size)), result)
def test_subtract_min_without_nan(self):
segment = [1, 2, 4, 1, 2, 4]
segment = pd.Series(segment)
result = [0, 1, 3, 0, 1, 3]
utils_result = list(utils.subtract_min_without_nan(segment))
self.assertEqual(utils_result, result)
def test_subtract_min_with_nan(self):
segment = [np.NaN, 2, 4, 1, 2, 4]
segment = pd.Series(segment)
result = [2, 4, 1, 2, 4]
utils_result = list(utils.subtract_min_without_nan(segment)[1:])
self.assertEqual(utils_result, result)
def test_get_convolve(self):
data = [1, 2, 3, 2, 2, 0, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 3, 2, 0]
data = pd.Series(data)
pattern_index = [2, 8, 15]
window_size = 2
av_model = [1, 2, 3, 2, 1]
result = []
self.assertNotEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result)
def test_get_convolve_with_nan(self):
data = [1, 2, 3, 2, np.NaN, 0, 2, 3, 4, np.NaN, 2, 1, 1, 2, 3, 4, 3, np.NaN, 0]
data = pd.Series(data)
pattern_index = [2, 8, 15]
window_size = 2
av_model = [1, 2, 3, 2, 1]
result = utils.get_convolve(pattern_index, av_model, data, window_size)
for val in result:
self.assertFalse(np.isnan(val))
def test_get_convolve_empty_data(self):
data = []
pattern_index = []
window_size = 2
window_size_zero = 0
av_model = []
result = []
self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result)
self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size_zero), result)
def test_get_distribution_density(self):
segment = [1, 1, 1, 3, 5, 5, 5]
segment = pd.Series(segment)
result = (3, 5, 1)
self.assertEqual(utils.get_distribution_density(segment), result)
def test_find_jump_parameters_center(self):
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
segment = pd.Series(segment)
jump_center = [10, 11]
self.assertIn(utils.find_parameters(segment, 0, 'jump')[0], jump_center)
def test_find_jump_parameters_height(self):
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
segment = pd.Series(segment)
jump_height = [3.5, 4]
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_height[0])
self.assertLessEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_height[1])
def test_find_jump_parameters_length(self):
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
segment = pd.Series(segment)
jump_length = 2
self.assertEqual(utils.find_parameters(segment, 0, 'jump')[2], jump_length)
def test_find_drop_parameters_center(self):
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
segment = pd.Series(segment)
drop_center = [14, 15, 16]
self.assertIn(utils.find_parameters(segment, 0, 'drop')[0], drop_center)
def test_find_drop_parameters_height(self):
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
segment = pd.Series(segment)
drop_height = [3.5, 4]
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_height[0])
self.assertLessEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_height[1])
def test_find_drop_parameters_length(self):
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
segment = pd.Series(segment)
drop_length = 2
self.assertEqual(utils.find_parameters(segment, 0, 'drop')[2], drop_length)
def test_get_av_model_empty_data(self):
patterns_list = []
result = []
self.assertEqual(utils.get_av_model(patterns_list), result)
def test_find_jump_nan_data(self):
data = [np.NaN, np.NaN, np.NaN, np.NaN]
data = pd.Series(data)
length = 2
height = 3
length_zero = 0
height_zero = 0
result = []
self.assertEqual(utils.find_jump(data, height, length), result)
self.assertEqual(utils.find_jump(data, height_zero, length_zero), result)
def test_find_drop_nan_data(self):
data = [np.NaN, np.NaN, np.NaN, np.NaN]
data = pd.Series(data)
length = 2
height = 3
length_zero = 0
height_zero = 0
result = []
self.assertEqual(utils.find_drop(data, height, length), result)
self.assertEqual(utils.find_drop(data, height_zero, length_zero), result)
if __name__ == '__main__':
unittest.main()