You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1.4 KiB
1.4 KiB
Hastic server
Implementation of basic pattern recognition and unsupervised learning for anomaly detection.
Implementation of analytic unit for Hastic. see REST API
Build & run
First of all, you should generate API key in your Grafana instance.
Without API key hastic-server will not be able to use your datasources.
Docker
Example of running hastic-server in Docker:
docker build -t hastic-server .
docker run -d --name hastic-server -p 80:8000 -e HASTIC_API_KEY=<your_grafana_api_key> hastic-server
Linux
Environment variables
You can export following environment variables for hastic-server to use:
- HASTIC_API_KEY - (required) API-key of your Grafana instance
- HASTIC_PORT - (optional) port you want to run server on, default: 8000
Dependencies
- python3 with:
- pip
- pandas
- seglearn
- scipy
- tsfresh
- nodejs >= 9
Example of running hastic-server on Debian / Ubuntu host:
$ export HASTIC_API_KEY=<your_grafana_api_key>
$ export HASTIC_PORT=<port_you_want_to_run_server_on>
# apt-get install python3 \
python3-pip \
gnupg \
curl \
make \
g++ \
git
$ pip3 install pandas
$ pip3 install seglearn
$ pip3 install scipy
$ pip3 install tsfresh
$ curl -sL https://deb.nodesource.com/setup_9.x | bash -
# apt-get update && apt-get install -y nodejs
$ cd server
$ npm install && npm run build
$ npm start